Loading [MathJax]/jax/output/SVG/config.js
Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 2020, Volume 205, Number 2, Pages 190–207
DOI: https://doi.org/10.4213/tmf9916
(Mi tmf9916)
 

This article is cited in 3 scientific papers (total in 3 papers)

Reductions of the strict KP hierarchy

G. F. Helmincka, E. A. Panasenkob

a Korteweg-de Vries Institute, University of Amsterdam, Amsterdam, The Netherlands
b Derzhavin Tambov State University, Tambov, Russia
Full-text PDF (469 kB) Citations (3)
References:
Abstract: Let $R$ be a commutative complex algebra and $\partial$ be a $\mathbb{C}$-linear derivation of $R$ such that all powers of $\partial$ are $R$-linearly independent. Let $R[\partial]$ be the algebra of differential operators in $\partial$ with coefficients in $R$ and $Psd$ be its extension by the pseudodifferential operators in $\partial$ with coefficients in $R$. In the algebra $R[\partial]$, we seek monic differential operators $\mathbf{M}_n$ of order $n\ge2$ without a constant term satisfying a system of Lax equations determined by the decomposition of $Psd$ into a direct sum of two Lie algebras that lies at the basis of the strict KP hierarchy. Because this set of Lax equations is an analogue for this decomposition of the $n$-KdV hierarchy, we call it the strict $n$-KdV hierarchy. The system has a minimal realization, which allows showing that it has homogeneity properties. Moreover, we show that the system is compatible, i.e., the strict differential parts of the powers of $M=(\mathbf{M}_n)^{1/n}$ satisfy zero-curvature conditions, which suffice for obtaining the Lax equations for $\mathbf{M}_n$ and, in particular, for proving that the $n$th root $M$ of $\mathbf{M}_n$ is a solution of the strict KP theory if and only if $\mathbf{M}_n$ is a solution of the strict $n$-KdV hierarchy. We characterize the place of solutions of the strict $n$-KdV hierarchy among previously known solutions of the strict KP hierarchy.
Keywords: strict KP hierarchy, reduction, minimal realization, scaling transformation.
Received: 02.04.2020
Revised: 02.04.2020
English version:
Theoretical and Mathematical Physics, 2020, Volume 205, Issue 2, Pages 1411–1425
DOI: https://doi.org/10.1134/S0040577920110021
Bibliographic databases:
Document Type: Article
Language: Russian
Citation: G. F. Helminck, E. A. Panasenko, “Reductions of the strict KP hierarchy”, TMF, 205:2 (2020), 190–207; Theoret. and Math. Phys., 205:2 (2020), 1411–1425
Citation in format AMSBIB
\Bibitem{HelPan20}
\by G.~F.~Helminck, E.~A.~Panasenko
\paper Reductions of the~strict KP hierarchy
\jour TMF
\yr 2020
\vol 205
\issue 2
\pages 190--207
\mathnet{http://mi.mathnet.ru/tmf9916}
\crossref{https://doi.org/10.4213/tmf9916}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4169736}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2020TMP...205.1411H}
\elib{https://elibrary.ru/item.asp?id=45128929}
\transl
\jour Theoret. and Math. Phys.
\yr 2020
\vol 205
\issue 2
\pages 1411--1425
\crossref{https://doi.org/10.1134/S0040577920110021}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000592185000002}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85096554169}
Linking options:
  • https://www.mathnet.ru/eng/tmf9916
  • https://doi.org/10.4213/tmf9916
  • https://www.mathnet.ru/eng/tmf/v205/i2/p190
  • This publication is cited in the following 3 articles:
    1. G. F. Helminck, J. A. Weenink, “LU Factorizations for ℕ × ℕ-Matrices and Solutions of the k[S]-Hierarchy and Its Strict Version”, Geometry, 2:2 (2025), 4  crossref
    2. G. Helminck, E. Panasenko, The Diverse World of PDEs, Contemporary Mathematics, 788, 2023, 135  crossref
    3. G. F. Helminck, E. A. Panasenko, “Darboux transformations for the strict KP hierarchy”, Theoret. and Math. Phys., 206:3 (2021), 296–314  mathnet  crossref  crossref  mathscinet  adsnasa  isi
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:253
    Full-text PDF :76
    References:46
    First page:5
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025