Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 2020, Volume 205, Number 2, Pages 190–207
DOI: https://doi.org/10.4213/tmf9916
(Mi tmf9916)
 

This article is cited in 2 scientific papers (total in 2 papers)

Reductions of the strict KP hierarchy

G. F. Helmincka, E. A. Panasenkob

a Korteweg-de Vries Institute, University of Amsterdam, Amsterdam, The Netherlands
b Derzhavin Tambov State University, Tambov, Russia
Full-text PDF (469 kB) Citations (2)
References:
Abstract: Let $R$ be a commutative complex algebra and $\partial$ be a $\mathbb{C}$-linear derivation of $R$ such that all powers of $\partial$ are $R$-linearly independent. Let $R[\partial]$ be the algebra of differential operators in $\partial$ with coefficients in $R$ and $Psd$ be its extension by the pseudodifferential operators in $\partial$ with coefficients in $R$. In the algebra $R[\partial]$, we seek monic differential operators $\mathbf{M}_n$ of order $n\ge2$ without a constant term satisfying a system of Lax equations determined by the decomposition of $Psd$ into a direct sum of two Lie algebras that lies at the basis of the strict KP hierarchy. Because this set of Lax equations is an analogue for this decomposition of the $n$-KdV hierarchy, we call it the strict $n$-KdV hierarchy. The system has a minimal realization, which allows showing that it has homogeneity properties. Moreover, we show that the system is compatible, i.e., the strict differential parts of the powers of $M=(\mathbf{M}_n)^{1/n}$ satisfy zero-curvature conditions, which suffice for obtaining the Lax equations for $\mathbf{M}_n$ and, in particular, for proving that the $n$th root $M$ of $\mathbf{M}_n$ is a solution of the strict KP theory if and only if $\mathbf{M}_n$ is a solution of the strict $n$-KdV hierarchy. We characterize the place of solutions of the strict $n$-KdV hierarchy among previously known solutions of the strict KP hierarchy.
Keywords: strict KP hierarchy, reduction, minimal realization, scaling transformation.
Received: 02.04.2020
Revised: 02.04.2020
English version:
Theoretical and Mathematical Physics, 2020, Volume 205, Issue 2, Pages 1411–1425
DOI: https://doi.org/10.1134/S0040577920110021
Bibliographic databases:
Document Type: Article
Language: Russian
Citation: G. F. Helminck, E. A. Panasenko, “Reductions of the strict KP hierarchy”, TMF, 205:2 (2020), 190–207; Theoret. and Math. Phys., 205:2 (2020), 1411–1425
Citation in format AMSBIB
\Bibitem{HelPan20}
\by G.~F.~Helminck, E.~A.~Panasenko
\paper Reductions of the~strict KP hierarchy
\jour TMF
\yr 2020
\vol 205
\issue 2
\pages 190--207
\mathnet{http://mi.mathnet.ru/tmf9916}
\crossref{https://doi.org/10.4213/tmf9916}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4169736}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2020TMP...205.1411H}
\elib{https://elibrary.ru/item.asp?id=45128929}
\transl
\jour Theoret. and Math. Phys.
\yr 2020
\vol 205
\issue 2
\pages 1411--1425
\crossref{https://doi.org/10.1134/S0040577920110021}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000592185000002}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85096554169}
Linking options:
  • https://www.mathnet.ru/eng/tmf9916
  • https://doi.org/10.4213/tmf9916
  • https://www.mathnet.ru/eng/tmf/v205/i2/p190
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:211
    Full-text PDF :46
    References:33
    First page:5
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024