Loading [MathJax]/jax/output/SVG/config.js
Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 2020, Volume 204, Number 2, Pages 171–180
DOI: https://doi.org/10.4213/tmf9910
(Mi tmf9910)
 

This article is cited in 8 scientific papers (total in 8 papers)

Airy function and transition between the semiclassical and harmonic oscillator approximations for one-dimensional bound states

A. Yu. Anikin, S. Yu. Dobrokhotov, A. V. Tsvetkova

Ishlinsky Institute for Problems in Mechanics of the Russian Academy of Sciences, Moscow, Russia
Full-text PDF (475 kB) Citations (8)
References:
Abstract: We consider the one-dimensional Schrödinger operator with a semiclassical small parameter $h$. We show that the "global" asymptotic form of its bound states in terms of the Airy function "works" not only for excited states $n\sim1/h$ but also for semi-excited states $n\sim1/h^\alpha$, $\alpha>0$, and, moreover, $n$ starts at $n=2$ or even $n=1$ in examples. We also prove that the closeness of such an asymptotic form to the eigenfunction of the harmonic oscillator approximation.
Keywords: bound state, Schrödinger operator, semiclassical approximation, asymptotics, eigenfunction, harmonic oscillator, Airy function.
Funding agency Grant number
Russian Foundation for Basic Research 18-31-00273
Ministry of Science and Higher Education of the Russian Federation AAAA-A17-117021310377-1
This research is supported by the Russian Foundation for Basic Research (Grant No. 18-31-00273) and was also supported by the Federal Target Program (No. AAAA-A17-117021310377-1).
Received: 23.03.2020
Revised: 23.03.2020
English version:
Theoretical and Mathematical Physics, 2020, Volume 204, Issue 2, Pages 984–992
DOI: https://doi.org/10.1134/S0040577920080024
Bibliographic databases:
Document Type: Article
MSC: 34E20
Language: Russian
Citation: A. Yu. Anikin, S. Yu. Dobrokhotov, A. V. Tsvetkova, “Airy function and transition between the semiclassical and harmonic oscillator approximations for one-dimensional bound states”, TMF, 204:2 (2020), 171–180; Theoret. and Math. Phys., 204:2 (2020), 984–992
Citation in format AMSBIB
\Bibitem{AniDobTsv20}
\by A.~Yu.~Anikin, S.~Yu.~Dobrokhotov, A.~V.~Tsvetkova
\paper Airy function and transition between the semiclassical and harmonic oscillator approximations for one-dimensional bound states
\jour TMF
\yr 2020
\vol 204
\issue 2
\pages 171--180
\mathnet{http://mi.mathnet.ru/tmf9910}
\crossref{https://doi.org/10.4213/tmf9910}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4153735}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2020TMP...204..984A}
\elib{https://elibrary.ru/item.asp?id=45393618}
\transl
\jour Theoret. and Math. Phys.
\yr 2020
\vol 204
\issue 2
\pages 984--992
\crossref{https://doi.org/10.1134/S0040577920080024}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000564930100002}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85089750080}
Linking options:
  • https://www.mathnet.ru/eng/tmf9910
  • https://doi.org/10.4213/tmf9910
  • https://www.mathnet.ru/eng/tmf/v204/i2/p171
  • This publication is cited in the following 8 articles:
    1. V. M. Rozenbaum, I. V. Shapochkina, L. I. Trakhtenberg, “Quantum particle in a V-shaped well of arbitrary asymmetry. Brownian motors”, Phys. Usp., 67:10 (2024), 1046–1055  mathnet  crossref  crossref  adsnasa  isi
    2. Anna V. Tsvetkova, “Lagrangian Manifolds in the Theory of Wave Beams and Solutions of the Helmholtz Equation”, Regul. Chaotic Dyn., 29:6 (2024), 866–885  mathnet  crossref
    3. V. V. Rykhlov, “Efficient semiclassical approximation for bound states in graphene in magnetic field with a small trigonal warping correction”, Math. Notes, 116:6 (2024), 1339–1349  mathnet  crossref  crossref
    4. A. A. Fedotov, “Close Turning Points and the Harper Operator”, Math. Notes, 113:5 (2023), 741–746  mathnet  crossref  crossref  mathscinet
    5. A. A. Fedotov, “Complex WKB method (one-dimensional linear problems on the complex plane)”, Math Notes, 114:5-6 (2023), 1418  crossref
    6. S. Yu. Dobrokhotov, A. V. Tsvetkova, “Global asymptotics for functions of parabolic cylinder and solutions of the Schrödinger equation with a potential in the form of a nonsmooth double well”, Russ. J. Math. Phys., 30:1 (2023), 46  crossref  mathscinet
    7. A. Yu. Anikin, S. Yu. Dobrokhotov, A. A. Shkalikov, “On Expansions in the Exact and Asymptotic Eigenfunctions of the One-Dimensional Schrödinger Operator”, Math. Notes, 112:5 (2022), 623–641  mathnet  crossref  crossref  mathscinet
    8. A. A. Fedotov, “Semiclassical Asymptotics for a Difference Schrödinger Equation with Two Coalescent Turning Points”, Math. Notes, 109:6 (2021), 990–994  mathnet  crossref  crossref  isi  elib
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:439
    Full-text PDF :219
    References:68
    First page:16
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025