Abstract:
We consider nonlocal symmetries that all or all even (all odd) equations of the AKNS hierarchy have. We construct examples of solutions simultaneously satisfying several nonlocal equations of the AKNS hierarchy. We present a detailed study of single-phase solutions.
Citation:
V. B. Matveev, A. O. Smirnov, “Multiphase solutions of nonlocal symmetric reductions of equations of the AKNS hierarchy: General analysis and simplest examples”, TMF, 204:3 (2020), 383–395; Theoret. and Math. Phys., 204:3 (2020), 1154–1165
A. B. Khasanov, T. G. Khasanov, “The Cauchy Problem for the Nonlinear Complex Modified Korteweg-de Vries Equation with Additional Terms in the Class of Periodic Infinite-Gap Functions”, Sib Math J, 65:4 (2024), 846
A. B. Khasanov, T. G. Khasanov, “Zadacha Koshi dlya nelineinogo kompleksnogo modifitsirovannogo uravneniya Kortevega — de Friza (kmKdF) s dopolnitelnymi chlenami v klasse periodicheskikh beskonechnozonnykh funktsii”, Sib. matem. zhurn., 65:4 (2024), 735–759
A. Khasanov, R. Eshbekov, Kh. Normurodov, “Integration of a nonlinear Hirota type equation with finite density in the class of periodic functions”, Lobachevskii J. Math., 44:10 (2023), 4329
J. Wang, H. Wu, “On (2+1)-dimensional mixed AKNS hierarchy”, Commun. Nonlinear Sci. Numer. Simul., 104 (2022), 106052
G. A. Mannonov, A. B. Khasanov, “The Cauchy problem for a nonlinear Hirota equation in the class of periodic infinite-zone functions”, St. Petersburg Math. J., 34:5 (2023), 821–845
A. Boutet de Monvel, Y. Rybalko, D. Shepelsky, “Focusing nonlocal nonlinear Schrödinger equation with asymmetric boundary conditions: large-time behavior”, Toeplitz Operators and Random Matrices, Operator Theory: Advances and Applications, 289, 2022, 193
J. Wang, H. Wu, D.-J. Zhang, “Reciprocal transformations of the space–time shifted nonlocal short pulse equations”, Chinese Phys. B, 31:12 (2022), 120201
V. S. Gerdjikov, A. O. Smirnov, “Fundamental analytic solutions for the Kulish-Sklyanin model with constant boundary conditions”, APplication of Mathematics in Technical and Natural Sciences: 13th International Hybrid Conference for Promoting the Application of Mathematics in Technical and Natural Sciences - AMiTaNS'21, AIP Conf. Proc., 2522, no. 1, 2022, 030004
S.-m. Liu, J. Wang, D.-j. Zhang, “Solutions to integrable space-time shifted nonlocal equations”, Reports on Mathematical Physics, 89:2 (2022), 199
A. O. Smirnov, V. B. Matveev, “Finite-gap solutions of nonlocal equations in Ablowitz-Kaup-Newell-Segur hierarchy”, Ufa Math. J., 13:2 (2021), 81–98
V. B. Matveev, A. O. Smirnov, “Elliptic solitons and «freak waves»”, St. Petersburg Math. J., 33:3 (2022), 523–551