Abstract:
We study an unbounded $2\times2$ operator matrix $\mathcal{A}$ in the direct product of two Hilbert spaces. We obtain asymptotic formulas for the number of eigenvalues of $\mathcal{A}$. We consider a $2\times2$ operator matrix $\mathcal{A}_\mu$, where $\mu>0$ is the coupling constant, associated with the Hamiltonian of a system with at most three particles on the lattice $\mathbb{Z}^3$. We find the critical value $\mu_0$ of the coupling constant $\mu$ for which $\mathcal{A}_{\mu_0}$ has an infinite number of eigenvalues. These eigenvalues accumulate at the lower and upper bounds of the essential spectrum. We obtain an asymptotic formula for the number of such eigenvalues in both the left and right parts of the essential spectrum.
Citation:
T. H. Rasulov, E. B. Dilmurodov, “Infinite number of eigenvalues of $2\times 2$ operator matrices: Asymptotic discrete spectrum”, TMF, 205:3 (2020), 368–390; Theoret. and Math. Phys., 205:3 (2020), 1564–1584
This publication is cited in the following 11 articles:
M. E. Muminov, U. R. Shadiev, “O suschestvovanii sobstvennogo znacheniya obobschennoi modeli Fridrikhsa”, Izv. vuzov. Matem., 2024, no. 4, 31–38
M. I. Muminov, U. R. Shadiev, “On the Existence of an Eigenvalue of the Generalized Friedrichs Model”, Russ Math., 68:4 (2024), 28
Gulhayo H. Umirkulova, Bekzod I. Bahronov, Nargiza A. Tosheva, Otabek A. Begmurodov, Nilufar U. Akboeva, S. Yekimov, V. Tsipko, “Faddeev equation and its symmetric version for a three-particle lattice hamiltonian”, E3S Web Conf., 587 (2024), 03003
Elyor B. Dilmurodov, Nargiza A. Tosheva, Nabiya A. Turayeva, Bolatbek T. Karamatov, Durdona Sh. Shokirova, S. Yekimov, V. Tsipko, “2×2 operator matrix with real parameter and its spectrum”, E3S Web Conf., 587 (2024), 03002
B. I. Bakhronov, T. Kh. Rasulov, M. Rekhman, “Usloviya suschestvovaniya sobstvennykh znachenii trekhchastichnogo reshetchatogo modelnogo gamiltoniana”, Izv. vuzov. Matem., 2023, no. 7, 3–12
T. H. Rasulov, E. B. Dilmurodov, K. G. Khayitova, “Spectrum of a three-particle model Hamiltonian on a one-dimensional lattice with non-local potentials”, Physical Mesomechanics Of Condensed Matter: Physical Principles of Multiscale Structure Formation and the Mechanisms of Nonlinear Behavior: MESO 2022, AIP Conf. Proc., 2764, no. 1, 2023, 030005
E. B. Dilmurodov, “Discrete eigenvalues of a $2\times 2$ operator matrix”, Physical Mesomechanics Of Condensed Matter: Physical Principles of Multiscale Structure Formation and the Mechanisms of Nonlinear Behavior: MESO2022, AIP Conf. Proc., 2764, no. 1, 2023, 030004
N. A. Tosheva, “Essential spectrum of a family of $3 \times 3$ operator matrices: Location of the branches”, Physical Mesomechanics Of Condensed Matter: Physical Principles of Multiscale Structure Formation and the Mechanisms of Nonlinear Behavior: MESO2022, AIP Conf. Proc., 2764, no. 1, 2023, 030003
B. I. Bahronov, T. H. Rasulov, “On the numerical range of a Friedrichs model with rank two perturbation: Threshold analysis technique”, Physical Mesomechanics Of Condensed Matter: Physical Principles of Multiscale Structure Formation and the Mechanisms of Nonlinear Behavior: MESO2022, AIP Conf. Proc., 2764, no. 1, 2023, 030007
H. M. Latipov, T. H. Rasulov, “Spectral relations for a $4 \times 4$ block operator matrix”, Physical Mesomechanics Of Condensed Matter: Physical Principles of Multiscale Structure Formation and the Mechanisms of Nonlinear Behavior: MESO2022, AIP Conf. Proc., 2764, PHYSICAL MESOMECHANICS OF CONDENSED MATTER: Physical Principles of Multiscale Structure Formation and the Mechanisms of Nonlinear Behavior: MESO2022, no. 1, 2023, 030006
B. I. Bahronov, T. H. Rasulov, M. Rehman, “Conditions for the Existence of Eigenvalues of a Three-Particle Lattice Model Hamiltonian”, Russ Math., 67:7 (2023), 1