Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 2020, Volume 205, Number 3, Pages 368–390
DOI: https://doi.org/10.4213/tmf9898
(Mi tmf9898)
 

This article is cited in 11 scientific papers (total in 11 papers)

Infinite number of eigenvalues of $2\times 2$ operator matrices: Asymptotic discrete spectrum

T. H. Rasulovab, E. B. Dilmurodovab

a Bukhara State University, Bukhara, Uzbekistan
b Bukhara Department, Romanovsky Mathematics Institute, Bukhara, Uzbekistan
References:
Abstract: We study an unbounded $2\times2$ operator matrix $\mathcal{A}$ in the direct product of two Hilbert spaces. We obtain asymptotic formulas for the number of eigenvalues of $\mathcal{A}$. We consider a $2\times2$ operator matrix $\mathcal{A}_\mu$, where $\mu>0$ is the coupling constant, associated with the Hamiltonian of a system with at most three particles on the lattice $\mathbb{Z}^3$. We find the critical value $\mu_0$ of the coupling constant $\mu$ for which $\mathcal{A}_{\mu_0}$ has an infinite number of eigenvalues. These eigenvalues accumulate at the lower and upper bounds of the essential spectrum. We obtain an asymptotic formula for the number of such eigenvalues in both the left and right parts of the essential spectrum.
Keywords: operator matrix, coupling constant, dispersion function, Fock space, creation operator, annihilation operator, Birman–Schwinger principle, essential spectrum, discrete spectrum, asymptotics.
Received: 04.03.2020
Revised: 23.04.2020
English version:
Theoretical and Mathematical Physics, 2020, Volume 205, Issue 3, Pages 1564–1584
DOI: https://doi.org/10.1134/S0040577920120028
Bibliographic databases:
Document Type: Article
Language: Russian
Citation: T. H. Rasulov, E. B. Dilmurodov, “Infinite number of eigenvalues of $2\times 2$ operator matrices: Asymptotic discrete spectrum”, TMF, 205:3 (2020), 368–390; Theoret. and Math. Phys., 205:3 (2020), 1564–1584
Citation in format AMSBIB
\Bibitem{RasDil20}
\by T.~H.~Rasulov, E.~B.~Dilmurodov
\paper Infinite number of eigenvalues of $2\times 2$ operator matrices: Asymptotic discrete spectrum
\jour TMF
\yr 2020
\vol 205
\issue 3
\pages 368--390
\mathnet{http://mi.mathnet.ru/tmf9898}
\crossref{https://doi.org/10.4213/tmf9898}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4181081}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2020TMP...205.1564R}
\elib{https://elibrary.ru/item.asp?id=45071068}
\transl
\jour Theoret. and Math. Phys.
\yr 2020
\vol 205
\issue 3
\pages 1564--1584
\crossref{https://doi.org/10.1134/S0040577920120028}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000600891900002}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85097871092}
Linking options:
  • https://www.mathnet.ru/eng/tmf9898
  • https://doi.org/10.4213/tmf9898
  • https://www.mathnet.ru/eng/tmf/v205/i3/p368
  • This publication is cited in the following 11 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:281
    Full-text PDF :76
    References:39
    First page:7
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024