Loading [MathJax]/jax/output/SVG/config.js
Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 2020, Volume 205, Number 3, Pages 368–390
DOI: https://doi.org/10.4213/tmf9898
(Mi tmf9898)
 

This article is cited in 11 scientific papers (total in 11 papers)

Infinite number of eigenvalues of $2\times 2$ operator matrices: Asymptotic discrete spectrum

T. H. Rasulovab, E. B. Dilmurodovab

a Bukhara State University, Bukhara, Uzbekistan
b Bukhara Department, Romanovsky Mathematics Institute, Bukhara, Uzbekistan
References:
Abstract: We study an unbounded $2\times2$ operator matrix $\mathcal{A}$ in the direct product of two Hilbert spaces. We obtain asymptotic formulas for the number of eigenvalues of $\mathcal{A}$. We consider a $2\times2$ operator matrix $\mathcal{A}_\mu$, where $\mu>0$ is the coupling constant, associated with the Hamiltonian of a system with at most three particles on the lattice $\mathbb{Z}^3$. We find the critical value $\mu_0$ of the coupling constant $\mu$ for which $\mathcal{A}_{\mu_0}$ has an infinite number of eigenvalues. These eigenvalues accumulate at the lower and upper bounds of the essential spectrum. We obtain an asymptotic formula for the number of such eigenvalues in both the left and right parts of the essential spectrum.
Keywords: operator matrix, coupling constant, dispersion function, Fock space, creation operator, annihilation operator, Birman–Schwinger principle, essential spectrum, discrete spectrum, asymptotics.
Received: 04.03.2020
Revised: 23.04.2020
English version:
Theoretical and Mathematical Physics, 2020, Volume 205, Issue 3, Pages 1564–1584
DOI: https://doi.org/10.1134/S0040577920120028
Bibliographic databases:
Document Type: Article
Language: Russian
Citation: T. H. Rasulov, E. B. Dilmurodov, “Infinite number of eigenvalues of $2\times 2$ operator matrices: Asymptotic discrete spectrum”, TMF, 205:3 (2020), 368–390; Theoret. and Math. Phys., 205:3 (2020), 1564–1584
Citation in format AMSBIB
\Bibitem{RasDil20}
\by T.~H.~Rasulov, E.~B.~Dilmurodov
\paper Infinite number of eigenvalues of $2\times 2$ operator matrices: Asymptotic discrete spectrum
\jour TMF
\yr 2020
\vol 205
\issue 3
\pages 368--390
\mathnet{http://mi.mathnet.ru/tmf9898}
\crossref{https://doi.org/10.4213/tmf9898}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4181081}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2020TMP...205.1564R}
\elib{https://elibrary.ru/item.asp?id=45071068}
\transl
\jour Theoret. and Math. Phys.
\yr 2020
\vol 205
\issue 3
\pages 1564--1584
\crossref{https://doi.org/10.1134/S0040577920120028}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000600891900002}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85097871092}
Linking options:
  • https://www.mathnet.ru/eng/tmf9898
  • https://doi.org/10.4213/tmf9898
  • https://www.mathnet.ru/eng/tmf/v205/i3/p368
  • This publication is cited in the following 11 articles:
    1. M. E. Muminov, U. R. Shadiev, “O suschestvovanii sobstvennogo znacheniya obobschennoi modeli Fridrikhsa”, Izv. vuzov. Matem., 2024, no. 4, 31–38  mathnet  crossref
    2. M. I. Muminov, U. R. Shadiev, “On the Existence of an Eigenvalue of the Generalized Friedrichs Model”, Russ Math., 68:4 (2024), 28  crossref
    3. Gulhayo H. Umirkulova, Bekzod I. Bahronov, Nargiza A. Tosheva, Otabek A. Begmurodov, Nilufar U. Akboeva, S. Yekimov, V. Tsipko, “Faddeev equation and its symmetric version for a three-particle lattice hamiltonian”, E3S Web Conf., 587 (2024), 03003  crossref
    4. Elyor B. Dilmurodov, Nargiza A. Tosheva, Nabiya A. Turayeva, Bolatbek T. Karamatov, Durdona Sh. Shokirova, S. Yekimov, V. Tsipko, “2×2 operator matrix with real parameter and its spectrum”, E3S Web Conf., 587 (2024), 03002  crossref
    5. B. I. Bakhronov, T. Kh. Rasulov, M. Rekhman, “Usloviya suschestvovaniya sobstvennykh znachenii trekhchastichnogo reshetchatogo modelnogo gamiltoniana”, Izv. vuzov. Matem., 2023, no. 7, 3–12  mathnet  crossref
    6. T. H. Rasulov, E. B. Dilmurodov, K. G. Khayitova, “Spectrum of a three-particle model Hamiltonian on a one-dimensional lattice with non-local potentials”, Physical Mesomechanics Of Condensed Matter: Physical Principles of Multiscale Structure Formation and the Mechanisms of Nonlinear Behavior: MESO 2022, AIP Conf. Proc., 2764, no. 1, 2023, 030005  crossref
    7. E. B. Dilmurodov, “Discrete eigenvalues of a $2\times 2$ operator matrix”, Physical Mesomechanics Of Condensed Matter: Physical Principles of Multiscale Structure Formation and the Mechanisms of Nonlinear Behavior: MESO2022, AIP Conf. Proc., 2764, no. 1, 2023, 030004  crossref
    8. N. A. Tosheva, “Essential spectrum of a family of $3 \times 3$ operator matrices: Location of the branches”, Physical Mesomechanics Of Condensed Matter: Physical Principles of Multiscale Structure Formation and the Mechanisms of Nonlinear Behavior: MESO2022, AIP Conf. Proc., 2764, no. 1, 2023, 030003  crossref
    9. B. I. Bahronov, T. H. Rasulov, “On the numerical range of a Friedrichs model with rank two perturbation: Threshold analysis technique”, Physical Mesomechanics Of Condensed Matter: Physical Principles of Multiscale Structure Formation and the Mechanisms of Nonlinear Behavior: MESO2022, AIP Conf. Proc., 2764, no. 1, 2023, 030007  crossref
    10. H. M. Latipov, T. H. Rasulov, “Spectral relations for a $4 \times 4$ block operator matrix”, Physical Mesomechanics Of Condensed Matter: Physical Principles of Multiscale Structure Formation and the Mechanisms of Nonlinear Behavior: MESO2022, AIP Conf. Proc., 2764, PHYSICAL MESOMECHANICS OF CONDENSED MATTER: Physical Principles of Multiscale Structure Formation and the Mechanisms of Nonlinear Behavior: MESO2022, no. 1, 2023, 030006  crossref
    11. B. I. Bahronov, T. H. Rasulov, M. Rehman, “Conditions for the Existence of Eigenvalues of a Three-Particle Lattice Model Hamiltonian”, Russ Math., 67:7 (2023), 1  crossref
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:336
    Full-text PDF :111
    References:55
    First page:7
     
      Contact us:
    math-net2025_05@mi-ras.ru
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025