Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 2020, Volume 204, Number 1, Pages 3–9
DOI: https://doi.org/10.4213/tmf9885
(Mi tmf9885)
 

This article is cited in 2 scientific papers (total in 2 papers)

Chebyshev polynomials, Catalan numbers, and tridiagonal matrices

A. E. Artisevicha, B. S. Bychkovb, A. B. Shabatc

a Adyghe State University, Maykop, Russia
b National Research University "Higher School of Economics", Moscow, Russia
c Landau Institute for Theoretical Physics of Russian Academy of Sciences, Moscow, Russia
Full-text PDF (399 kB) Citations (2)
References:
Abstract: We establish a relation between linear second-order difference equations corresponding to Chebyshev polynomials and Catalan numbers. The latter are the limit coefficients of a converging series of rational functions corresponding to the Riccati equation. As the main application, we show a relation between the polynomials $\varphi_n(\mu)$ that are solutions of the problem of commutation of a tridiagonal matrix with the simplest Vandermonde matrix and Chebyshev polynomials.
Keywords: Chebyshev polynomial, tridiagonal matrix.
Funding agency Grant number
Ministry of Science and Higher Education of the Russian Federation
The research of B. S. Bychkov was performed within a project supported by the Ministry of Science and Higher Education of the Russian Federation (CIS at Demidov Yaroslavl State University).
Received: 27.01.2020
Revised: 27.01.2020
English version:
Theoretical and Mathematical Physics, 2020, Volume 204, Issue 1, Pages 837–842
DOI: https://doi.org/10.1134/S0040577920070016
Bibliographic databases:
Document Type: Article
Language: Russian
Citation: A. E. Artisevich, B. S. Bychkov, A. B. Shabat, “Chebyshev polynomials, Catalan numbers, and tridiagonal matrices”, TMF, 204:1 (2020), 3–9; Theoret. and Math. Phys., 204:1 (2020), 837–842
Citation in format AMSBIB
\Bibitem{ArtBycSha20}
\by A.~E.~Artisevich, B.~S.~Bychkov, A.~B.~Shabat
\paper Chebyshev polynomials, Catalan numbers, and tridiagonal matrices
\jour TMF
\yr 2020
\vol 204
\issue 1
\pages 3--9
\mathnet{http://mi.mathnet.ru/tmf9885}
\crossref{https://doi.org/10.4213/tmf9885}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4133463}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2020TMP...204..837A}
\elib{https://elibrary.ru/item.asp?id=45404751}
\transl
\jour Theoret. and Math. Phys.
\yr 2020
\vol 204
\issue 1
\pages 837--842
\crossref{https://doi.org/10.1134/S0040577920070016}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000549724400001}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85088162699}
Linking options:
  • https://www.mathnet.ru/eng/tmf9885
  • https://doi.org/10.4213/tmf9885
  • https://www.mathnet.ru/eng/tmf/v204/i1/p3
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024