Loading [MathJax]/jax/output/SVG/config.js
Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 1997, Volume 111, Number 1, Pages 32–43
DOI: https://doi.org/10.4213/tmf988
(Mi tmf988)
 

This article is cited in 15 scientific papers (total in 15 papers)

On group-theoretic approach to study Einstein's and Maxwell's equations

S. E. Stepanov

Vladimir State Pedagogical University
References:
Abstract: Basing on the classical problem of the representation theory of the orthogonal group about decomposition of the tensor product of representations on irreducible components the partial classification of Einstein's equations is obtained. A new class of Maxwell's equations of relativistic electrodynamics is singled out and studied. The pointwise irreducible decompositions of the energy-momentum tensor as well as the tensor of the electro-magnetic field are established and a physical interpretation of the corresponding components is given.
Received: 14.03.1996
English version:
Theoretical and Mathematical Physics, 1997, Volume 111, Issue 1, Pages 419–427
DOI: https://doi.org/10.1007/BF02634197
Bibliographic databases:
Language: Russian
Citation: S. E. Stepanov, “On group-theoretic approach to study Einstein's and Maxwell's equations”, TMF, 111:1 (1997), 32–43; Theoret. and Math. Phys., 111:1 (1997), 419–427
Citation in format AMSBIB
\Bibitem{Ste97}
\by S.~E.~Stepanov
\paper On group-theoretic approach to study Einstein's and Maxwell's equations
\jour TMF
\yr 1997
\vol 111
\issue 1
\pages 32--43
\mathnet{http://mi.mathnet.ru/tmf988}
\crossref{https://doi.org/10.4213/tmf988}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1473424}
\zmath{https://zbmath.org/?q=an:0964.53503}
\transl
\jour Theoret. and Math. Phys.
\yr 1997
\vol 111
\issue 1
\pages 419--427
\crossref{https://doi.org/10.1007/BF02634197}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1997XX96900003}
Linking options:
  • https://www.mathnet.ru/eng/tmf988
  • https://doi.org/10.4213/tmf988
  • https://www.mathnet.ru/eng/tmf/v111/i1/p32
  • This publication is cited in the following 15 articles:
    1. S.E. Stepanov, I. I. Tsyganok, “Pointwise orthogonal splitting of the space of TT-tensors”, Differ. Geom. Mnogoobr. Figur, 2023, no. 54(2), 45  crossref
    2. Nazarenko O., Kadievskaya I., Wright H., “On the Deformation With the Special Type of Stress Tensor”, AIP Conference Proceedings, 2302, ed. Todorov M., Amer Inst Physics, 2020, 040006  crossref  isi
    3. Josef Mikeš et al., Differential Geometry of Special Mappings, 2019  crossref
    4. Josef Mikeš et al., Differential Geometry of Special Mappings, 2019  crossref
    5. Mikes J. Stepanova E. Vanzurova A., “Differential Geometry of Special Mappings”, Differential Geometry of Special Mappings, Palacky Univ, 2015, 1–566  mathscinet  isi
    6. Stepanov S., Mikes J., “Seven Invariant Classes of the Einstein Equations and Projective Mappings”, XX International Fall Workshop on Geometry and Physics, AIP Conference Proceedings, 1460, eds. Linan M., Barbero F., DeDiego D., Amer Inst Physics, 2012, 221–225  crossref  adsnasa  isi
    7. T. V. Zudina, S. E. Stepanov, I. G. Shandra, “Equiaffine mappings”, Russian Math. (Iz. VUZ), 51:8 (2007), 25–32  mathnet  crossref  mathscinet  zmath
    8. T. V. Zudina, S. E. Stepanov, “On the classification of equivolume mappings of pseudo-Riemannian manifolds”, Russian Math. (Iz. VUZ), 50:8 (2006), 17–25  mathnet  mathscinet
    9. S. E. Stepanov, “Vanishing theorems in affine, Riemannian, and Lorenz geometries”, J. Math. Sci., 141:1 (2007), 929–964  mathnet  crossref  mathscinet  zmath  elib
    10. S. E. Stepanov, I. G. Shandra, “Garmonic diffeomorphisms of manifolds”, St. Petersburg Math. J., 16:2 (2005), 401–412  mathnet  crossref  mathscinet  zmath
    11. S. E. Stepanov, “The Killing–Yano Tensor”, Theoret. and Math. Phys., 134:3 (2003), 333–338  mathnet  crossref  crossref  mathscinet  zmath  isi
    12. Stepanov, SE, “On conformal Killing 2-form of the electromagnetic field”, Journal of Geometry and Physics, 33:3–4 (2000), 191  crossref  mathscinet  zmath  adsnasa  isi  scopus  scopus  scopus
    13. S. E. Stepanov, “An analytic method in general relativity”, Theoret. and Math. Phys., 122:3 (2000), 402–414  mathnet  crossref  crossref  mathscinet  zmath  isi
    14. V. A. Astapenko, L. A. Bureeva, V. S. Lisitsa, “Classical and quantum theories of the polarization bremsstrahlung in the local electron density model”, J. Exp. Theor. Phys., 90:3 (2000), 434  crossref
    15. V. A. Astapenko, “Polarization-interference effects in the bremsstrahlung of quasiclassical electrons on ions with a core”, J. Exp. Theor. Phys., 88:5 (1999), 889  crossref
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:491
    Full-text PDF :265
    References:66
    First page:2
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025