Abstract:
We describe the process of constructing a positive solution of the homogeneous Wiener–Hopf integral equation in an octant in a special (conservative) case. Applying the obtained general results to the homogeneous stationary Peierls equation allows studying the behavior of the solutions of this equation for large argument values. These problems are particularly interesting in the theory of radiation transfer.
Citation:
L. G. Arabadzhyan, G. L. Arabajyan, “Nontrivial solvability of the homogeneous Wiener–Hopf multiple integral equation in the conservative case and the Peierls equation”, TMF, 204:1 (2020), 142–150; Theoret. and Math. Phys., 204:1 (2020), 957–965
\Bibitem{AraAra20}
\by L.~G.~Arabadzhyan, G.~L.~Arabajyan
\paper Nontrivial solvability of the~homogeneous Wiener--Hopf multiple integral equation in the~conservative case and the~Peierls equation
\jour TMF
\yr 2020
\vol 204
\issue 1
\pages 142--150
\mathnet{http://mi.mathnet.ru/tmf9866}
\crossref{https://doi.org/10.4213/tmf9866}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4133471}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2020TMP...204..957A}
\elib{https://elibrary.ru/item.asp?id=45440501}
\transl
\jour Theoret. and Math. Phys.
\yr 2020
\vol 204
\issue 1
\pages 957--965
\crossref{https://doi.org/10.1134/S0040577920070090}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000549724400009}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85088162984}
Linking options:
https://www.mathnet.ru/eng/tmf9866
https://doi.org/10.4213/tmf9866
https://www.mathnet.ru/eng/tmf/v204/i1/p142
This publication is cited in the following 3 articles:
Kh. A. Khachatryan, A. S. Petrosyan, “Odnoparametricheskoe semeistvo neogranichennykh polozhitelnykh reshenii dlya odnogo klassa nelineinykh trekhmernykh integralnykh uravnenii s operatorom tipa Gammershteina–Nemytskogo”, Tr. MMO, 84, no. 1, MTsNMO, M., 2023, 37–53
Kh. A. Khachatryan, H. S. Petrosyan, “Solvability of two-dimensional integral equations with concave nonlinearity in the plane”, J. Math. Sci., 269:2 (2023), 239
Kh. A. Khachatryan, H. S. Petrosyan, “Alternating bounded solutions of a class of nonlinear two-dimensional convolution-type integral equations”, Trans. Moscow Math. Soc., 82 (2021), 259–271