Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 2020, Volume 203, Number 3, Pages 342–350
DOI: https://doi.org/10.4213/tmf9859
(Mi tmf9859)
 

This article is cited in 2 scientific papers (total in 2 papers)

Collapse rate of solutions of the Cauchy problem for the nonlinear Schrödinger equation

Sh. M. Nasibov

Institute of Applied Mathematics, Baku State University, Baku, Azerbaijan
Full-text PDF (412 kB) Citations (2)
References:
Abstract: We prove that solutions of the Cauchy problem for the nonlinear Schrödinger equation with certain initial data collapse in a finite time, whose exact value we estimate from above. We obtain an estimate from below for the solution collapse rate in certain norms.
Keywords: nonlinear Schrödinger evolution equation, Cauchy problem, collapse, collapse rate, interpolation inequality.
Received: 06.12.2019
Revised: 06.12.2019
English version:
Theoretical and Mathematical Physics, 2020, Volume 203, Issue 3, Pages 726–733
DOI: https://doi.org/10.1134/S0040577920060021
Bibliographic databases:
Document Type: Article
Language: Russian
Citation: Sh. M. Nasibov, “Collapse rate of solutions of the Cauchy problem for the nonlinear Schrödinger equation”, TMF, 203:3 (2020), 342–350; Theoret. and Math. Phys., 203:3 (2020), 726–733
Citation in format AMSBIB
\Bibitem{Nas20}
\by Sh.~M.~Nasibov
\paper Collapse rate of solutions of the~Cauchy problem for the~nonlinear Schr\"odinger equation
\jour TMF
\yr 2020
\vol 203
\issue 3
\pages 342--350
\mathnet{http://mi.mathnet.ru/tmf9859}
\crossref{https://doi.org/10.4213/tmf9859}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4104780}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2020TMP...203..726N}
\elib{https://elibrary.ru/item.asp?id=45492425}
\transl
\jour Theoret. and Math. Phys.
\yr 2020
\vol 203
\issue 3
\pages 726--733
\crossref{https://doi.org/10.1134/S0040577920060021}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000547478300002}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85087498325}
Linking options:
  • https://www.mathnet.ru/eng/tmf9859
  • https://doi.org/10.4213/tmf9859
  • https://www.mathnet.ru/eng/tmf/v203/i3/p342
  • This publication is cited in the following 2 articles:
    1. Sh. M. Nasibov, “On one interpolation inequality and its application to the Bürgers equatio”, Theoret. and Math. Phys., 214:2 (2023), 207–209  mathnet  crossref  crossref  mathscinet  adsnasa
    2. Sh. M. Nasibov, “Nonlinear evolutionary Schrödinger equation in the supercritical case”, Theoret. and Math. Phys., 209:3 (2021), 1683–1692  mathnet  crossref  crossref  adsnasa  isi  elib
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:360
    Full-text PDF :87
    References:53
    First page:8
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025