Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 2020, Volume 202, Number 2, Pages 264–277
DOI: https://doi.org/10.4213/tmf9836
(Mi tmf9836)
 

This article is cited in 1 scientific paper (total in 1 paper)

Semiclassical asymptotic behavior of the lower spectral bands of the Schrödinger operator with a trigonal-symmetric periodic potential

A. Yu. Anikinab, M. A. Vavilovab

a Ishlinsky Institute for Problems in Mechanics, RAS, Moscow, Russia
b Moscow Institute of Physics and Technology (National Research University), Dolgoprudny, Moscow Oblast, Russia
Full-text PDF (533 kB) Citations (1)
References:
Abstract: We study the semiclassical approximation of the lower bands of the Schrödinger operator with a periodic two-dimensional potential with a trigonal symmetry and consider the cases where the potential has one or two wells in the elementary cell. We obtain the exponentially small asymptotic behavior of the band width and find the dispersion relations. We investigate the form of the Bloch functions. Solving this problem is the first step in studying the more complicated (and more physically interesting) problem of tunnel effects in rotating dimers.
Keywords: periodic Schrödinger operator, semiclassical asymptotic behavior, spectral band, tunnel effect.
Funding agency Grant number
Russian Foundation for Basic Research 18-31-00273
This research is supported by Russian Foundation for Basic Research (Grant No. 18-31-00273).
Received: 23.10.2019
Revised: 23.10.2019
English version:
Theoretical and Mathematical Physics, 2020, Volume 202, Issue 2, Pages 231–242
DOI: https://doi.org/10.1134/S0040577920020063
Bibliographic databases:
Document Type: Article
MSC: 41A60
Language: Russian
Citation: A. Yu. Anikin, M. A. Vavilova, “Semiclassical asymptotic behavior of the lower spectral bands of the Schrödinger operator with a trigonal-symmetric periodic potential”, TMF, 202:2 (2020), 264–277; Theoret. and Math. Phys., 202:2 (2020), 231–242
Citation in format AMSBIB
\Bibitem{AniVav20}
\by A.~Yu.~Anikin, M.~A.~Vavilova
\paper Semiclassical asymptotic behavior of the~lower spectral bands of the~Schr\"odinger operator with a~trigonal-symmetric periodic potential
\jour TMF
\yr 2020
\vol 202
\issue 2
\pages 264--277
\mathnet{http://mi.mathnet.ru/tmf9836}
\crossref{https://doi.org/10.4213/tmf9836}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4070079}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2020TMP...202..231A}
\elib{https://elibrary.ru/item.asp?id=43258682}
\transl
\jour Theoret. and Math. Phys.
\yr 2020
\vol 202
\issue 2
\pages 231--242
\crossref{https://doi.org/10.1134/S0040577920020063}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000520959900006}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85082040561}
Linking options:
  • https://www.mathnet.ru/eng/tmf9836
  • https://doi.org/10.4213/tmf9836
  • https://www.mathnet.ru/eng/tmf/v202/i2/p264
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:335
    Full-text PDF :63
    References:42
    First page:10
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024