Loading [MathJax]/jax/output/SVG/config.js
Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 2019, Volume 201, Number 3, Pages 446–456
DOI: https://doi.org/10.4213/tmf9813
(Mi tmf9813)
 

This article is cited in 1 scientific paper (total in 1 paper)

Bell polynomials in the Mathematica system and asymptotic solutions of integral equations

O. I. Maricheva, S. Yu. Slavyanovb, Yu. A. Brychkovc

a Wolfram Research, Champaign, IL, USA
b Saint Petersburg State University, Petrodvorets, St. Petersburg, Russia
c Federal Research Center "Computer Science and Control," Institution of Russian Academy of Sciences, Dorodnicyn Computing Centre of RAS, Moscow, Russia
Full-text PDF (420 kB) Citations (1)
References:
Abstract: We consider the possibility of solving functional equations that arise when integrating homogeneous integral Fredholm equations of the second kind with a highly oscillatory kernel by using Bell polynomials. We review different types and properties of Bell polynomials. The focus of this paper is to promote using tools in the Bell polynomial package in the Mathematica system to solve certain problems in electrodynamics.
Keywords: asymptotic form of eigenfunctions of integral Fredholm equations, nonlinear functional equation, linear functional equation, saddle-point method, Kolmogorov–Arnold–Moser (KAM) theory, Bell polynomial, generalized Bell polynomial, partial Bell polynomial, Mathematica system.
Funding agency Grant number
Russian Foundation for Basic Research 17-07-00217_a
Saint Petersburg State University 40847559
The research of Yu. A. Brychkov is supported by the Russian Foundation for Basic Research (Grant No. 17-07-00217_a).
The research of S. Yu. Slavyanov is supported by St. Petersburg State University (Grant No. ID-40847559).
Received: 05.09.2019
Revised: 09.09.2019
English version:
Theoretical and Mathematical Physics, 2019, Volume 201, Issue 3, Pages 1798–1807
DOI: https://doi.org/10.1134/S0040577919120110
Bibliographic databases:
Document Type: Article
Language: Russian
Citation: O. I. Marichev, S. Yu. Slavyanov, Yu. A. Brychkov, “Bell polynomials in the Mathematica system and asymptotic solutions of integral equations”, TMF, 201:3 (2019), 446–456; Theoret. and Math. Phys., 201:3 (2019), 1798–1807
Citation in format AMSBIB
\Bibitem{MarSlaBry19}
\by O.~I.~Marichev, S.~Yu.~Slavyanov, Yu.~A.~Brychkov
\paper Bell polynomials in the~Mathematica system and asymptotic solutions
of integral equations
\jour TMF
\yr 2019
\vol 201
\issue 3
\pages 446--456
\mathnet{http://mi.mathnet.ru/tmf9813}
\crossref{https://doi.org/10.4213/tmf9813}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4036833}
\elib{https://elibrary.ru/item.asp?id=43220886}
\transl
\jour Theoret. and Math. Phys.
\yr 2019
\vol 201
\issue 3
\pages 1798--1807
\crossref{https://doi.org/10.1134/S0040577919120110}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000511860000011}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85077535020}
Linking options:
  • https://www.mathnet.ru/eng/tmf9813
  • https://doi.org/10.4213/tmf9813
  • https://www.mathnet.ru/eng/tmf/v201/i3/p446
  • This publication is cited in the following 1 articles:
    1. T. A. Milovanova, I. S. Zaryadov, L. A. Meikhanadzhyan, “Sovmestnoe statsionarnoe raspredelenie v sisteme $\mathrm{GI}/M/n/\infty$ s obobschennym obnovleniem”, Sistemy i sredstva inform., 31:3 (2021), 4–17  mathnet  crossref
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
     
      Contact us:
    math-net2025_01@mi-ras.ru
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025