Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 2020, Volume 202, Number 2, Pages 187–206
DOI: https://doi.org/10.4213/tmf9807
(Mi tmf9807)
 

This article is cited in 1 scientific paper (total in 1 paper)

Discrete Crum's theorems and lattice KdV-type equations

Cheng Zhanga, Linyu Pengb, Da-jun Zhanga

a Department of Mathematics, Shanghai University, Shanghai, China
b Waseda Institute for Advanced Study, Waseda University, Tokyo, Japan
Full-text PDF (582 kB) Citations (1)
References:
Abstract: We develop Darboux transformations ($DTs$) and their associated Crum's formulas for two Schrödinger-type difference equations that are themselves discretized versions of the spectral problems of the KdV and modified KdV equations. With DTs viewed as a discretization process, classes of semidiscrete and fully discrete KdV-type systems, including the lattice versions of the potential KdV, potential modified KdV, and Schwarzian KdV equations, arise as the consistency condition for the differential/difference spectral problems and their DTs. The integrability of the underlying lattice models, such as Lax pairs, multidimensional consistency, $\tau$-functions, and soliton solutions, can be easily obtained by directly applying the discrete Crum's formulas.
Keywords: discrete Crum's theorem, Darboux transformation, exact discretization, discrete Schrödinger equation, lattice KdV equations.
Funding agency Grant number
National Natural Science Foundation of China 11601312
11631007
11875040
Japan Society for the Promotion of Science 16KT0024
Ministry of Education, Culture, Sports, Science and Technology, Japan
Shanghai Young Eastern Scholar Program
Waseda University Grants for Special Research Projects 2017K-170
2019C-179
2019E-036
2019R-081
This research is supported by the National Natural Science Foundation of China (Grant Nos. 11601312, 11631007, and 11875040), the Shanghai Young Eastern Scholar program (2016–2019), the JSPS (Grant-in-Aid for Scientific Research No. 16KT0024), Waseda University (Special Research Project Nos. 2017K-170, 2019C-179, 2019E-036, and 2019R-081), and the MEXT Top Global University Project.
Received: 30.08.2019
Revised: 30.08.2019
English version:
Theoretical and Mathematical Physics, 2020, Volume 202, Issue 2, Pages 165–182
DOI: https://doi.org/10.1134/S0040577920020038
Bibliographic databases:
Document Type: Article
PACS: 02.30.Ik, 05.45.Yv
MSC: 35C08, 37K15, 34A33
Language: Russian
Citation: Cheng Zhang, Linyu Peng, Da-jun Zhang, “Discrete Crum's theorems and lattice KdV-type equations”, TMF, 202:2 (2020), 187–206; Theoret. and Math. Phys., 202:2 (2020), 165–182
Citation in format AMSBIB
\Bibitem{ZhaPenZha20}
\by Cheng~Zhang, Linyu~Peng, Da-jun~Zhang
\paper Discrete Crum's theorems and lattice KdV-type equations
\jour TMF
\yr 2020
\vol 202
\issue 2
\pages 187--206
\mathnet{http://mi.mathnet.ru/tmf9807}
\crossref{https://doi.org/10.4213/tmf9807}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2020TMP...202..165Z}
\elib{https://elibrary.ru/item.asp?id=43581721}
\transl
\jour Theoret. and Math. Phys.
\yr 2020
\vol 202
\issue 2
\pages 165--182
\crossref{https://doi.org/10.1134/S0040577920020038}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000520959900003}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85083275266}
Linking options:
  • https://www.mathnet.ru/eng/tmf9807
  • https://doi.org/10.4213/tmf9807
  • https://www.mathnet.ru/eng/tmf/v202/i2/p187
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024