Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 2020, Volume 202, Number 3, Pages 415–424
DOI: https://doi.org/10.4213/tmf9800
(Mi tmf9800)
 

This article is cited in 3 scientific papers (total in 3 papers)

Motion of dispersive shock edges in nonlinear pulse evolution

A. M. Kamchatnov

Institute of Spectroscopy, Russian Academy of Sciences, Troitsk, Moscow, Russia
Full-text PDF (382 kB) Citations (3)
References:
Abstract: We formulate a method for calculating the velocities of the edges of dispersive shock waves that are generated after wave breaking of pulses during their propagation in a nonlinear medium. The method is based on the properties of the Whitham modulation system at its degenerate limits obtained for either a vanishing amplitude of oscillations at one edge or a vanishing wave number at the other edge.
Keywords: nonlinear wave, soliton, dispersive shock wave, Whitham theory.
Funding agency Grant number
Russian Foundation for Basic Research 20-01-00063
This research was supported by the Russian Foundation for Basic Research (Grant No. 20-01-00063).
Received: 28.08.2019
Revised: 28.08.2019
English version:
Theoretical and Mathematical Physics, 2020, Volume 202, Issue 3, Pages 363–370
DOI: https://doi.org/10.1134/S0040577920030083
Bibliographic databases:
Document Type: Article
PACS: 01.30.Cc, 03.75.Lm, 05.45.Yv
Language: Russian
Citation: A. M. Kamchatnov, “Motion of dispersive shock edges in nonlinear pulse evolution”, TMF, 202:3 (2020), 415–424; Theoret. and Math. Phys., 202:3 (2020), 363–370
Citation in format AMSBIB
\Bibitem{Kam20}
\by A.~M.~Kamchatnov
\paper Motion of dispersive shock edges in nonlinear pulse evolution
\jour TMF
\yr 2020
\vol 202
\issue 3
\pages 415--424
\mathnet{http://mi.mathnet.ru/tmf9800}
\crossref{https://doi.org/10.4213/tmf9800}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4070091}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2020TMP...202..363K}
\elib{https://elibrary.ru/item.asp?id=43268354}
\transl
\jour Theoret. and Math. Phys.
\yr 2020
\vol 202
\issue 3
\pages 363--370
\crossref{https://doi.org/10.1134/S0040577920030083}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000524228200008}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85083207442}
Linking options:
  • https://www.mathnet.ru/eng/tmf9800
  • https://doi.org/10.4213/tmf9800
  • https://www.mathnet.ru/eng/tmf/v202/i3/p415
  • This publication is cited in the following 3 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:270
    Full-text PDF :62
    References:35
    First page:11
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024