Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 2020, Volume 205, Number 3, Pages 400–419
DOI: https://doi.org/10.4213/tmf9794
(Mi tmf9794)
 

Calogero–Sutherland system at a free fermion point

M. G. Matushkoab

a National Research University "Higher School of Economics", Moscow, Russia
b Center for Advanced Studies, Skolkovo Institute of Science and Technology, Moscow, Russia
References:
Abstract: We present two ways to obtain precise expressions for the commuting Hamiltonians of the integrable system regarded as a fermionic limit of the quantum Calogero–Sutherland system as the number of particles tends to infinity with some special values of the coupling constant $\beta$. The construction is realized in the Fock space.
Keywords: Calogero–Sutherland system, free fermion, boson–fermion correspondence.
Funding agency Grant number
Russian Science Foundation 20-41-09009
Simons Foundation
This research was supported by a grant from the Russian Science Foundation (Project No. 20-41-09009) and by the Simons Foundation.
Received: 04.08.2019
Revised: 21.06.2020
English version:
Theoretical and Mathematical Physics, 2020, Volume 205, Issue 3, Pages 1593–1610
DOI: https://doi.org/10.1134/S0040577920120041
Bibliographic databases:
Document Type: Article
Language: Russian
Citation: M. G. Matushko, “Calogero–Sutherland system at a free fermion point”, TMF, 205:3 (2020), 400–419; Theoret. and Math. Phys., 205:3 (2020), 1593–1610
Citation in format AMSBIB
\Bibitem{Mat20}
\by M.~G.~Matushko
\paper Calogero--Sutherland system at a~free fermion point
\jour TMF
\yr 2020
\vol 205
\issue 3
\pages 400--419
\mathnet{http://mi.mathnet.ru/tmf9794}
\crossref{https://doi.org/10.4213/tmf9794}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4181083}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2020TMP...205.1593M}
\elib{https://elibrary.ru/item.asp?id=45068097}
\transl
\jour Theoret. and Math. Phys.
\yr 2020
\vol 205
\issue 3
\pages 1593--1610
\crossref{https://doi.org/10.1134/S0040577920120041}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000600891900004}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85097862119}
Linking options:
  • https://www.mathnet.ru/eng/tmf9794
  • https://doi.org/10.4213/tmf9794
  • https://www.mathnet.ru/eng/tmf/v205/i3/p400
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:269
    Full-text PDF :67
    References:24
    First page:10
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024