Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 2020, Volume 202, Number 3, Pages 447–457
DOI: https://doi.org/10.4213/tmf9763
(Mi tmf9763)
 

Why do the microstructures of the main pulse and the interpulse of the pulsar in the Crab nebula differ so dramatically?

V. M. Kontorovich

Institute of Radio Astronomy NAS Ukraine, Kharkiv, Ukraine
References:
Abstract: Pulsars are magnetized neutron stars. They are not resolved by modern radio telescopes and are studied only by radiation coming from the regions of the magnetic poles. Because of the rotation, this narrow radiation is received as pulses. In a few pulsars whose magnetic axis is almost orthogonal to the rotation axis (the simplest hypothesis), pulses are observed from both poles: the (main) pulse and the interpulse. Such objects primarily include a pulsar in the Crab nebula, observed at many frequencies of the electromagnetic spectrum. In the remarkable work of Hankins and Eilek, a striking difference between the spectra of the main pulse and the interpulse in the Crab nebula in the centimeter wavelength range at microsecond resolution was found (surprising the authors: “In traditional pulsar models ...the MP and IP should be the same in their observable quantities (such as spectrum, time signature, or dispersion). We were—and remain—quite surprised that this turns out not to be the case in the Crab pulsar.” See T. H. Hankins and J. A. Eilek, “Radio emission signatures in the Crab pulsar,” Astrophys. J., 670:1 (2007), 693–701). In particular, a wide range of frequencies was observed in the spectra of the main pulse forming “vertical structures,” while “horizontal structures” with distinguished frequencies were observed in the spectra of the interpulse at the same frequencies. Such a difference, related to different radiation mechanisms (nonrelativistic electron emission in a longitudinal accelerating field for the main pulse and relativistic positron radiation due to the curvature of magnetic field lines for the interpulse), is explained by the change from the nonrelativistic to the relativistic mechanism as the frequency increases. Therefore, the frequencies at which the mechanism changes differ for the main pulse and the interpulse. The frequency of observation in the work of Hankins and Eilek is just between these frequencies with which the difference in the microstructure is connected.
Keywords: pulsar, Crab nebula pulsar, radiation mechanism, main pulse, interpulse, pulse microstructure.
Received: 16.06.2019
Revised: 21.08.2019
English version:
Theoretical and Mathematical Physics, 2020, Volume 202, Issue 3, Pages 390–398
DOI: https://doi.org/10.1134/S0040577920030113
Bibliographic databases:
Document Type: Article
Language: Russian
Citation: V. M. Kontorovich, “Why do the microstructures of the main pulse and the interpulse of the pulsar in the Crab nebula differ so dramatically?”, TMF, 202:3 (2020), 447–457; Theoret. and Math. Phys., 202:3 (2020), 390–398
Citation in format AMSBIB
\Bibitem{Kon20}
\by V.~M.~Kontorovich
\paper Why do the~microstructures of the~main pulse and the~interpulse of
the~pulsar in the~Crab nebula differ so dramatically?
\jour TMF
\yr 2020
\vol 202
\issue 3
\pages 447--457
\mathnet{http://mi.mathnet.ru/tmf9763}
\crossref{https://doi.org/10.4213/tmf9763}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4070094}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2020TMP...202..390K}
\elib{https://elibrary.ru/item.asp?id=43292143}
\transl
\jour Theoret. and Math. Phys.
\yr 2020
\vol 202
\issue 3
\pages 390--398
\crossref{https://doi.org/10.1134/S0040577920030113}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000524228200011}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85083160894}
Linking options:
  • https://www.mathnet.ru/eng/tmf9763
  • https://doi.org/10.4213/tmf9763
  • https://www.mathnet.ru/eng/tmf/v202/i3/p447
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:287
    Full-text PDF :68
    References:40
    First page:4
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024