Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 2020, Volume 203, Number 2, Pages 231–250
DOI: https://doi.org/10.4213/tmf9757
(Mi tmf9757)
 

This article is cited in 3 scientific papers (total in 3 papers)

Coupling of a biquaternionic Dirac field to a bosonic field

A. I. Arbabab

a Department of Physics, College of Science, Qassim University, Buraidah, Kingdom of Saudi Arabia
b Department of Physics, Faculty of Science, University of Khartoum, Khartoum, Sudan
Full-text PDF (499 kB) Citations (3)
References:
Abstract: We extend the biquaternionic Dirac equation to include interactions with a background bosonic field. The obtained biquaternionic Dirac equation yields Maxwell-like equations that hold for both a matter field and an electromagnetic field. We establish that the electric field is perpendicular to the matter magnetic field and the magnetic field is perpendicular to the matter inertial field. We show that the inertial and magnetic masses are conserved separately. The magnetic mass density arises as a result of the coupling between the vector potential and the matter inertial field. The presence of the vector and scalar potentials and also the matter inertial and magnetic fields modify the standard form of the derived Maxwell equations. The resulting interacting electrodynamics equations are generalizations of the equations of Wilczek or Chert–Simons axion-like fields. The coupled field in the biquaternioic Dirac field reconstructs the Wilczek axion field. We show that the electromagnetic field vector $\vec F=\vec E+ ic\vec B$, where $\vec E$ and $\vec B$ are the respective electric and magnetic fields, satisfies the massive Dirac equation and, moreover, $\vec\nabla\cdot\vec F=0$.
Keywords: quaternionic quantum mechanics, axion electrodynamics, modified electrodynamics, interacting field, Maxwellian quantum mechanics.
Received: 27.05.2019
Revised: 22.10.2019
English version:
Theoretical and Mathematical Physics, 2020, Volume 203, Issue 2, Pages 631–647
DOI: https://doi.org/10.1134/S0040577920050062
Bibliographic databases:
Document Type: Article
Language: Russian
Citation: A. I. Arbab, “Coupling of a biquaternionic Dirac field to a bosonic field”, TMF, 203:2 (2020), 231–250; Theoret. and Math. Phys., 203:2 (2020), 631–647
Citation in format AMSBIB
\Bibitem{Arb20}
\by A.~I.~Arbab
\paper Coupling of a~biquaternionic Dirac field to a~bosonic field
\jour TMF
\yr 2020
\vol 203
\issue 2
\pages 231--250
\mathnet{http://mi.mathnet.ru/tmf9757}
\crossref{https://doi.org/10.4213/tmf9757}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2020TMP...203..631A}
\transl
\jour Theoret. and Math. Phys.
\yr 2020
\vol 203
\issue 2
\pages 631--647
\crossref{https://doi.org/10.1134/S0040577920050062}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000536408800005}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85085759186}
Linking options:
  • https://www.mathnet.ru/eng/tmf9757
  • https://doi.org/10.4213/tmf9757
  • https://www.mathnet.ru/eng/tmf/v203/i2/p231
  • This publication is cited in the following 3 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:327
    Full-text PDF :92
    References:41
    First page:16
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024