Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 2020, Volume 202, Number 1, Pages 66–80
DOI: https://doi.org/10.4213/tmf9755
(Mi tmf9755)
 

This article is cited in 1 scientific paper (total in 1 paper)

Inverse spectral problem for the Schrödinger equation with an additional linear potential

A. Kh. Khanmamedovabc, M. G. Makhmudovab

a Baku State University, Baku, Azerbaijan
b Institute of Mathematics and Mechanics, Azerbaijan National Academy of Sciences, Baku, Azerbaijan
c Azerbaijan University, Baku, Azerbaijan
Full-text PDF (461 kB) Citations (1)
References:
Abstract: We consider the one-dimensional Schrödinger equation with an additional linear potential on the whole axis and construct a transformation operator with a condition at $-\infty$. We obtain the fundamental integral Gelfand–Levitan equation on the half-axis $(-\infty,x)$ and prove the unique solvability of this fundamental equation.
Keywords: Schrödinger equation, additional linear potential, Airy function, transformation operator, Gelfand–Levitan equation, inverse scattering problem.
Received: 26.05.2019
Revised: 30.08.2019
English version:
Theoretical and Mathematical Physics, 2020, Volume 202, Issue 1, Pages 58–71
DOI: https://doi.org/10.1134/S0040577920010067
Bibliographic databases:
Document Type: Article
Language: Russian
Citation: A. Kh. Khanmamedov, M. G. Makhmudova, “Inverse spectral problem for the Schrödinger equation with an additional linear potential”, TMF, 202:1 (2020), 66–80; Theoret. and Math. Phys., 202:1 (2020), 58–71
Citation in format AMSBIB
\Bibitem{KhaMak20}
\by A.~Kh.~Khanmamedov, M.~G.~Makhmudova
\paper Inverse spectral problem for the~Schr\"odinger equation with an~additional linear potential
\jour TMF
\yr 2020
\vol 202
\issue 1
\pages 66--80
\mathnet{http://mi.mathnet.ru/tmf9755}
\crossref{https://doi.org/10.4213/tmf9755}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4045705}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2020TMP...202...58K}
\elib{https://elibrary.ru/item.asp?id=43286421}
\transl
\jour Theoret. and Math. Phys.
\yr 2020
\vol 202
\issue 1
\pages 58--71
\crossref{https://doi.org/10.1134/S0040577920010067}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000521153500006}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85082029614}
Linking options:
  • https://www.mathnet.ru/eng/tmf9755
  • https://doi.org/10.4213/tmf9755
  • https://www.mathnet.ru/eng/tmf/v202/i1/p66
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:318
    Full-text PDF :66
    References:32
    First page:14
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024