Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 2019, Volume 201, Number 3, Pages 315–336
DOI: https://doi.org/10.4213/tmf9744
(Mi tmf9744)
 

This article is cited in 4 scientific papers (total in 4 papers)

Spaces of type $S$ and deformation quantization

M. A. Soloviev

Lebedev Physical Institute, RAS, Moscow Russia
Full-text PDF (597 kB) Citations (4)
References:
Abstract: We study the properties of the Gelfand–Shilov spaces $S^{b_n}_{a_k}$ in the context of deformation quantization. Our main result is a characterization of their corresponding multiplier algebras with respect to a twisted convolution, which is given in terms of the inclusion relation between these algebras and the duals of the spaces of pointwise multipliers with an explicit description of these functional spaces. The proof of the inclusion theorem essentially uses the equality $S^{b_n}_{a_k}=S^{b_n}\cap S_{a_k}$.
Keywords: deformation quantization, Weyl symbol, Moyal product, multiplier algebra, Gelfand–Shilov spacedeformation quantization, Weyl symbol, Moyal product, multiplier algebra, Gelfand–Shilov space.
Received: 15.05.2019
Revised: 15.05.2019
English version:
Theoretical and Mathematical Physics, 2019, Volume 201, Issue 3, Pages 1682–1700
DOI: https://doi.org/10.1134/S004057791912002X
Bibliographic databases:
Document Type: Article
Language: Russian
Citation: M. A. Soloviev, “Spaces of type $S$ and deformation quantization”, TMF, 201:3 (2019), 315–336; Theoret. and Math. Phys., 201:3 (2019), 1682–1700
Citation in format AMSBIB
\Bibitem{Sol19}
\by M.~A.~Soloviev
\paper Spaces of type $S$ and deformation quantization
\jour TMF
\yr 2019
\vol 201
\issue 3
\pages 315--336
\mathnet{http://mi.mathnet.ru/tmf9744}
\crossref{https://doi.org/10.4213/tmf9744}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4036824}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2020TMP...201.1682S}
\elib{https://elibrary.ru/item.asp?id=43228626}
\transl
\jour Theoret. and Math. Phys.
\yr 2019
\vol 201
\issue 3
\pages 1682--1700
\crossref{https://doi.org/10.1134/S004057791912002X}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000511860000002}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85077551706}
Linking options:
  • https://www.mathnet.ru/eng/tmf9744
  • https://doi.org/10.4213/tmf9744
  • https://www.mathnet.ru/eng/tmf/v201/i3/p315
  • This publication is cited in the following 4 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:282
    Full-text PDF :39
    References:60
    First page:10
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024