Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 2020, Volume 203, Number 2, Pages 205–219
DOI: https://doi.org/10.4213/tmf9734
(Mi tmf9734)
 

This article is cited in 14 scientific papers (total in 14 papers)

Multisoliton solutions of the Degasperis–Procesi equation and its shortwave limit: Darboux transformation approach

Nianhua Liab, Gaihua Wangc, Yonghui Kuangd

a School of Mathematical Sciences, Huaqiao University, Quanzhou, Fujian, China
b Department of Mathematics, National Research University "Higher School of Economics", Moscow, Russia
c Department of Mathematics, School of Science, China University of Mining and Technology, Beijing, China
d School of Science, Zhongyuan University of Technology, Zhengzhou, China
References:
Abstract: We propose a new approach for calculating multisoliton solutions of the Degasperis–Procesi equation and its shortwave limit by combining a reciprocal transformation with the Darboux transformation of the negative flow of the Kaup–Kupershmidt hierarchy. In particular, different specifications of the soliton parameters lead to two different types of soliton solutions of the Degasperis–Procesi equation.
Keywords: Degasperis–Procesi equation, Darboux transformation, multisoliton solution.
Funding agency Grant number
National Natural Science Foundation of China 11505064
11805071
11871471
Natural Science Foundation of Fujian Province 2016J05008
This research is supported in part by the National Natural Science Foundation of China (Grant Nos. 11505064, 11805071, and 11871471) and the Natural Science Foundation of Fujian Province, China (Grant No. 2016J05008).
Received: 20.04.2019
Revised: 29.10.2019
English version:
Theoretical and Mathematical Physics, 2020, Volume 203, Issue 2, Pages 608–620
DOI: https://doi.org/10.1134/S0040577920050049
Bibliographic databases:
Document Type: Article
MSC: 37K05, 37K10, 35C08
Language: Russian
Citation: Nianhua Li, Gaihua Wang, Yonghui Kuang, “Multisoliton solutions of the Degasperis–Procesi equation and its shortwave limit: Darboux transformation approach”, TMF, 203:2 (2020), 205–219; Theoret. and Math. Phys., 203:2 (2020), 608–620
Citation in format AMSBIB
\Bibitem{LiWanKua20}
\by Nianhua~Li, Gaihua~Wang, Yonghui~Kuang
\paper Multisoliton solutions of the~Degasperis--Procesi equation and its shortwave limit: Darboux transformation approach
\jour TMF
\yr 2020
\vol 203
\issue 2
\pages 205--219
\mathnet{http://mi.mathnet.ru/tmf9734}
\crossref{https://doi.org/10.4213/tmf9734}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2020TMP...203..608L}
\elib{https://elibrary.ru/item.asp?id=43277638}
\transl
\jour Theoret. and Math. Phys.
\yr 2020
\vol 203
\issue 2
\pages 608--620
\crossref{https://doi.org/10.1134/S0040577920050049}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000536408800003}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85084216976}
Linking options:
  • https://www.mathnet.ru/eng/tmf9734
  • https://doi.org/10.4213/tmf9734
  • https://www.mathnet.ru/eng/tmf/v203/i2/p205
  • This publication is cited in the following 14 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:286
    Full-text PDF :65
    References:43
    First page:8
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024