Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 1997, Volume 110, Number 3, Pages 339–350
DOI: https://doi.org/10.4213/tmf973
(Mi tmf973)
 

This article is cited in 19 scientific papers (total in 19 papers)

On some generalizations of the factorization method

I. Z. Golubchik, V. V. Sokolov

Institute of Mathematics with Computing Centre, Ufa Science Centre, Russian Academy of Sciences
References:
Abstract: The classical factorization method reduces the system of differential equations $U_t=[U_+,U]$ to the problem of solving algebraic equations. Here $U(t)$ belongs to a Lie algebra $\mathfrak G$ which is the direct sum of subalgebras $\mathfrak G_+$ and $\mathfrak G_-$, where “+” denotes the projection on $\mathfrak G_+$. This method is generalized to the case $\mathfrak G_+\cap\mathfrak G_-\ne\{0\}$. The corresponding quadratic systems are reduced to linear systems with varying coefficients. It is shown that the generalized version of the factorization method is also applicable to systems of partial differential equations of the Liouville type equation.
Received: 01.08.1996
English version:
Theoretical and Mathematical Physics, 1997, Volume 110, Issue 3, Pages 267–276
DOI: https://doi.org/10.1007/BF02630453
Bibliographic databases:
Language: Russian
Citation: I. Z. Golubchik, V. V. Sokolov, “On some generalizations of the factorization method”, TMF, 110:3 (1997), 339–350; Theoret. and Math. Phys., 110:3 (1997), 267–276
Citation in format AMSBIB
\Bibitem{GolSok97}
\by I.~Z.~Golubchik, V.~V.~Sokolov
\paper On some generalizations of the factorization method
\jour TMF
\yr 1997
\vol 110
\issue 3
\pages 339--350
\mathnet{http://mi.mathnet.ru/tmf973}
\crossref{https://doi.org/10.4213/tmf973}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1471183}
\zmath{https://zbmath.org/?q=an:0922.58034}
\transl
\jour Theoret. and Math. Phys.
\yr 1997
\vol 110
\issue 3
\pages 267--276
\crossref{https://doi.org/10.1007/BF02630453}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1997XU74600001}
Linking options:
  • https://www.mathnet.ru/eng/tmf973
  • https://doi.org/10.4213/tmf973
  • https://www.mathnet.ru/eng/tmf/v110/i3/p339
  • This publication is cited in the following 19 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:436
    Full-text PDF :216
    References:92
    First page:2
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024