Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 1997, Volume 110, Number 3, Pages 339–350
DOI: https://doi.org/10.4213/tmf973
(Mi tmf973)
 

This article is cited in 19 scientific papers (total in 19 papers)

On some generalizations of the factorization method

I. Z. Golubchik, V. V. Sokolov

Institute of Mathematics with Computing Centre, Ufa Science Centre, Russian Academy of Sciences
References:
Abstract: The classical factorization method reduces the system of differential equations Ut=[U+,U]Ut=[U+,U] to the problem of solving algebraic equations. Here U(t)U(t) belongs to a Lie algebra G which is the direct sum of subalgebras G+ and G, where “+” denotes the projection on G+. This method is generalized to the case G+G{0}. The corresponding quadratic systems are reduced to linear systems with varying coefficients. It is shown that the generalized version of the factorization method is also applicable to systems of partial differential equations of the Liouville type equation.
Received: 01.08.1996
English version:
Theoretical and Mathematical Physics, 1997, Volume 110, Issue 3, Pages 267–276
DOI: https://doi.org/10.1007/BF02630453
Bibliographic databases:
Language: Russian
Citation: I. Z. Golubchik, V. V. Sokolov, “On some generalizations of the factorization method”, TMF, 110:3 (1997), 339–350; Theoret. and Math. Phys., 110:3 (1997), 267–276
Citation in format AMSBIB
\Bibitem{GolSok97}
\by I.~Z.~Golubchik, V.~V.~Sokolov
\paper On some generalizations of the factorization method
\jour TMF
\yr 1997
\vol 110
\issue 3
\pages 339--350
\mathnet{http://mi.mathnet.ru/tmf973}
\crossref{https://doi.org/10.4213/tmf973}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1471183}
\zmath{https://zbmath.org/?q=an:0922.58034}
\transl
\jour Theoret. and Math. Phys.
\yr 1997
\vol 110
\issue 3
\pages 267--276
\crossref{https://doi.org/10.1007/BF02630453}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1997XU74600001}
Linking options:
  • https://www.mathnet.ru/eng/tmf973
  • https://doi.org/10.4213/tmf973
  • https://www.mathnet.ru/eng/tmf/v110/i3/p339
  • This publication is cited in the following 19 articles:
    1. Sokolov V., Wolf T., “Non-Commutative Generalization of Integrable Quadratic Ode Systems”, Lett. Math. Phys., 110:3 (2020), 533–553  crossref  isi
    2. R. A. Atnagulova, O. V. Sokolova, “Factorization problem with intersection”, Ufa Math. J., 6:1 (2014), 3–11  mathnet  crossref  mathscinet  elib
    3. Maharaj A., Leach P.G.L., “Application of Symmetry and Singularity Analyses to Mathematical Models of Biological Systems”, Math. Comput. Simul., 96:SI (2014), 104–123  crossref  mathscinet  isi  scopus  scopus  scopus
    4. Karasu, A, “Nonlocal symmetries and integrable ordinary differential equations: xuml+3xx center dot+x(3)=0 and its generalizations”, Journal of Mathematical Physics, 50:7 (2009), 073509  crossref  mathscinet  zmath  adsnasa  isi  scopus  scopus  scopus
    5. Leach, PGL, “Decomposing populations”, South African Journal of Science, 104:1–2 (2008), 27  isi
    6. Maharaj, A, “Properties of the dominant behaviour of quadratic systems”, Journal of Nonlinear Mathematical Physics, 13:1 (2006), 129  crossref  mathscinet  zmath  adsnasa  isi  scopus  scopus  scopus
    7. Bruschi, M, “New solvable nonlinear matrix evolution equations”, Journal of Nonlinear Mathematical Physics, 12 (2005), 97  crossref  mathscinet  zmath  adsnasa  isi  scopus  scopus  scopus
    8. I. Z. Golubchik, V. V. Sokolov, “One More Kind of the Classical Yang–Baxter Equation”, Funct. Anal. Appl., 34:4 (2000), 296–298  mathnet  crossref  crossref  mathscinet  zmath  isi
    9. Leach, PGL, “Symmetry, singularities, and integrability in complex dynamics II. Rescaling and time-translation in two-dimensional systems”, Journal of Mathematical Analysis and Applications, 251:2 (2000), 587  crossref  mathscinet  zmath  isi  scopus  scopus  scopus
    10. Leach, PGL, “Symmetry, singularities and integrability in complex dynamics I: The reduction problem”, Journal of Nonlinear Mathematical Physics, 7:4 (2000), 445  crossref  mathscinet  zmath  adsnasa  isi  scopus  scopus  scopus
    11. Bruschi, M, “Solvable and/or integrable and/or linearizable N-body problems in ordinary (three-dimensional) space. I”, Journal of Nonlinear Mathematical Physics, 7:3 (2000), 303  crossref  mathscinet  zmath  adsnasa  isi  scopus  scopus  scopus
    12. Golubchik, IZ, “Generalized operator Yang–Baxter equations, integrable ODEs and nonassociative algebras”, Journal of Nonlinear Mathematical Physics, 7:2 (2000), 184  crossref  mathscinet  zmath  adsnasa  isi  scopus  scopus  scopus
    13. Mikhailov, AV, “Integrable ODEs on associative algebras”, Communications in Mathematical Physics, 211:1 (2000), 231  crossref  mathscinet  zmath  adsnasa  isi  scopus  scopus  scopus
    14. Igor Anders, Anne Boutet de Monvel, “Asymptotic Solitons of the Johnson Equation”, JNMP, 7:3 (2000), 284  crossref
    15. O. Lechtenfeld, A. Sorin, “Real Forms of the Complex Twisted N=2 Supersymmetric Toda Chain Hierarchy in Real N=1 and Twisted N=2 Superspaces”, JNMP, 7:4 (2000), 433  crossref
    16. Mircea Crâşmăreanu, “First Integrals Generated by Pseudosymmetries in Nambu-Poisson Mechanics”, JNMP, 7:2 (2000), 126  crossref
    17. Ferreira, LA, “Riccati-type equations, generalised WZNW equations, and multidimensional Toda systems”, Communications in Mathematical Physics, 203:3 (1999), 649  crossref  mathscinet  zmath  adsnasa  isi  scopus  scopus  scopus
    18. D. A. Slavnov, “Dimensional regularization along lines”, Theoret. and Math. Phys., 114:1 (1998), 118–126  mathnet  mathnet  crossref  crossref  isi
    19. I. Z. Golubchik, V. V. Sokolov, “Integrable equations on Z-graded Lie algebras”, Theoret. and Math. Phys., 112:3 (1997), 1097–1103  mathnet  crossref  crossref  mathscinet  zmath  isi  elib
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:467
    Full-text PDF :226
    References:100
    First page:2
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025