Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 2020, Volume 202, Number 1, Pages 143–154
DOI: https://doi.org/10.4213/tmf9723
(Mi tmf9723)
 

This article is cited in 3 scientific papers (total in 3 papers)

Adiabatic invariants of Herglotz type for perturbed nonconservative Lagrangian systems

Xue Tiana, Yi Zhangb

a School of Science, Nanjing University of Science and Technology
b College of Civil Engineering, Suzhou University of Science and Technology, Suzhou, China
Full-text PDF (404 kB) Citations (3)
References:
Abstract: Both conservative and nonconservative systems can be studied simultaneously using the differential variational principle of Herglotz type. For a perturbed system, in which parameters change with time, it is useful to find adiabatic invariants. Based on the Herglotz differential variational principle, we study the perturbation of infinitesimal transformations and adiabatic invariants for perturbed nonconservative Lagrangian systems. From the generalized Euler–Lagrange equation and the invariance condition for the Hamilton–Herglotz action under the group of infinitesimal transformations, we obtain an exact invariant of Herglotz type for a holonomic nonconservative system. We propose a definition of higher-order adiabatic invariants of Herglotz type and obtain such adiabatic invariants for nonconservative Lagrangian systems with small perturbations. We prove the corresponding inverse theorem of adiabatic invariants. As examples of using the obtained results, we consider an oscillator with square damping and a system with two degrees of freedom.
Keywords: perturbed system, Herglotz differential variational principle, adiabatic invariant, nonconservative Lagrangian system.
Funding agency Grant number
National Natural Science Foundation of China 11572212
Innovation Program for Postgraduate in Higher Education Institutions of Jiangsu Province KYZZ16_0479
This research was supported by the National Natural Science Foundation of China (Grant No. 11572212) and the Innovation Program for Postgraduate in Higher Education Institutions of Jiangsu Province (KYZZ16_0479).
Received: 18.03.2019
Revised: 30.08.2019
English version:
Theoretical and Mathematical Physics, 2020, Volume 202, Issue 1, Pages 126–135
DOI: https://doi.org/10.1134/S0040577920010110
Bibliographic databases:
Document Type: Article
PACS: 45.20.Jj, 11.15.Bt, 45.10.Db
Language: Russian
Citation: Xue Tian, Yi Zhang, “Adiabatic invariants of Herglotz type for perturbed nonconservative Lagrangian systems”, TMF, 202:1 (2020), 143–154; Theoret. and Math. Phys., 202:1 (2020), 126–135
Citation in format AMSBIB
\Bibitem{TiaZha20}
\by Xue~Tian, Yi~Zhang
\paper Adiabatic invariants of Herglotz type for perturbed nonconservative Lagrangian systems
\jour TMF
\yr 2020
\vol 202
\issue 1
\pages 143--154
\mathnet{http://mi.mathnet.ru/tmf9723}
\crossref{https://doi.org/10.4213/tmf9723}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4045710}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2020TMP...202..126T}
\elib{https://elibrary.ru/item.asp?id=43548997}
\transl
\jour Theoret. and Math. Phys.
\yr 2020
\vol 202
\issue 1
\pages 126--135
\crossref{https://doi.org/10.1134/S0040577920010110}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000521153500011}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85082070804}
Linking options:
  • https://www.mathnet.ru/eng/tmf9723
  • https://doi.org/10.4213/tmf9723
  • https://www.mathnet.ru/eng/tmf/v202/i1/p143
  • This publication is cited in the following 3 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024