Abstract:
Free coherent states for a system of two degrees of freedom are defined. 2-adic parameter on the set of coherent states correspondent to eigenvalue of operator of annihilation is constructed.
\Bibitem{Koz97}
\by S.~V.~Kozyrev
\paper Ultrametric space of free coherent states
\jour TMF
\yr 1997
\vol 110
\issue 2
\pages 334--336
\mathnet{http://mi.mathnet.ru/tmf972}
\crossref{https://doi.org/10.4213/tmf972}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1471690}
\zmath{https://zbmath.org/?q=an:0914.46068}
\transl
\jour Theoret. and Math. Phys.
\yr 1997
\vol 110
\issue 2
\pages 265--266
\crossref{https://doi.org/10.1007/BF02630452}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1997XR12900012}
Linking options:
https://www.mathnet.ru/eng/tmf972
https://doi.org/10.4213/tmf972
https://www.mathnet.ru/eng/tmf/v110/i2/p334
This publication is cited in the following 5 articles:
Dirk K. F. Meijer, Igor Jerman, Alexey V. Melkikh, Valeriy I. Sbitnev, Studies in Rhythm Engineering, Rhythmic Oscillations in Proteins to Human Cognition, 2021, 213
S. V. Kozyrev, “Methods and Applications of Ultrametric and pp-Adic Analysis: From Wavelet Theory to Biophysics”, Proc. Steklov Inst. Math., 274, suppl. 1 (2011), S1–S84
S. V. Kozyrev, “Rigged Hilbert Space of Free Coherent States and pp-Adic Numbers”, Theoret. and Math. Phys., 135:2 (2003), 642–650