Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 2019, Volume 200, Number 1, Pages 147–157
DOI: https://doi.org/10.4213/tmf9703
(Mi tmf9703)
 

This article is cited in 1 scientific paper (total in 1 paper)

Possible scenarios of a phase transition from isotropic liquid to a hexatic phase in the theory of melting in two-dimensional systems

V. N. Ryzhov, E. E. Tareeva

Vereshchagin Institute for High Pressure Physics, RAS, Moscow, Russia
Full-text PDF (403 kB) Citations (1)
References:
Abstract: A two-stage process consisting of two continuous Berezinskii–Kosterlitz–Thouless-type transitions with an intermediate anisotropic liquid, a hexatic phase, is a well-known scenario of melting in two-dimensional systems. A direct first-order transition, similar to melting in three-dimensional systems, is another scenario variant. We prove the possibility in principle of the existence of a third scenario according to which melting occurs via two transitions, but in contrast to predictions of the Berezinskii–Kosterlitz–Thouless theory, the transition from an isotropic liquid to a hexatic phase is a first-order transition. Such a scenario was recently observed in a computer simulation of two-dimensional systems and then in a real experiment. Our proof is based on an analysis of branching solutions of an exact closed nonlinear integral equation for a two-particle conditional distribution function.
Keywords: melting in two-dimensional systems, hexatic phase, density functional method.
Funding agency Grant number
Russian Foundation for Basic Research 17-02-00320
his research was supported by the Russian Foundation for Basic Research (Grant No. 17-02-00320).
Received: 29.01.2019
Revised: 29.01.2019
English version:
Theoretical and Mathematical Physics, 2019, Volume 200, Issue 1, Pages 1053–1062
DOI: https://doi.org/10.1134/S0040577919070092
Bibliographic databases:
Document Type: Article
Language: Russian
Citation: V. N. Ryzhov, E. E. Tareeva, “Possible scenarios of a phase transition from isotropic liquid to a hexatic phase in the theory of melting in two-dimensional systems”, TMF, 200:1 (2019), 147–157; Theoret. and Math. Phys., 200:1 (2019), 1053–1062
Citation in format AMSBIB
\Bibitem{RyzTar19}
\by V.~N.~Ryzhov, E.~E.~Tareeva
\paper Possible scenarios of a~phase transition from isotropic liquid to a~hexatic phase in the~theory of melting in two-dimensional systems
\jour TMF
\yr 2019
\vol 200
\issue 1
\pages 147--157
\mathnet{http://mi.mathnet.ru/tmf9703}
\crossref{https://doi.org/10.4213/tmf9703}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3981372}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2019TMP...200.1053R}
\elib{https://elibrary.ru/item.asp?id=38487826}
\transl
\jour Theoret. and Math. Phys.
\yr 2019
\vol 200
\issue 1
\pages 1053--1062
\crossref{https://doi.org/10.1134/S0040577919070092}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000479256000009}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85070276240}
Linking options:
  • https://www.mathnet.ru/eng/tmf9703
  • https://doi.org/10.4213/tmf9703
  • https://www.mathnet.ru/eng/tmf/v200/i1/p147
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024