Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 2019, Volume 200, Number 3, Pages 429–451
DOI: https://doi.org/10.4213/tmf9695
(Mi tmf9695)
 

This article is cited in 1 scientific paper (total in 1 paper)

Renormalization group analysis of models of advection of a vector admixture and a tracer field by a compressible turbulent flow

N. V. Antonova, N. M. Gulitskiia, M. M. Kostenkoa, T. Lučivjanskýb

a St. Petersburg State University, St. Petersburg, Russia
b Pavol Jozef Šafárik University in Košice, Košice, Slovakia
Full-text PDF (677 kB) Citations (1)
References:
Abstract: Using a quantum field theory renormalization group, we consider models of advection of a vector field and a tracer field by a compressible turbulent flow. Both advected fields are considered passive, i.e., they do not have a backward influence on the fluid dynamics. The velocity field is generated by the stochastic Navier–Stokes equation. We consider the model in the vicinity of the special space dimension $d=4$. Analysis of the model in the vicinity of this dimension allows constructing a double expansion in the parameters $y$ (related to the correlator of the random force for the velocity field) and $\varepsilon=4-d$. We show that in the framework of the one-loop approximation, the two models have similar scaling behavior, i.e., similar behavior of the correlation and structure functions in the inertial range. We calculate all critical dimensions, in particular, of tensor composite operators, in the leading order of the double expansion in $y$ and $\varepsilon$.
Keywords: developed turbulence, magnetohydrodynamics, turbulent advection, renormalization group, anomalous scaling.
Funding agency Grant number
Russian Foundation for Basic Research 18-32-00238
VEGA grant of the Ministry of Education, Science, Research and Sport of the Slovak Republic 1/0345/17
Agentúra na Podporu Výskumu a Vývoja APVV-16-0186
Foundation for the Development of Theoretical Physics and Mathematics BASIS
Saint Petersburg State University 37722050
This research was supported in part by the Russian Foundation for Basic Research (Grant No. 18-32-00238, all results concerning magnetohydrodynamics and vector admixture) and the Foundation for the Advancement of Theoretical Physics and Mathematics “BASIS.”
The research of N. M. Gulitskiy was supported by the St. Petersburg Committee of Science and Higher Schools and St. Petersburg University (Travel Grant No. 37722050).
The research of T. Lučivjanský was supported by VEGA (Grant No. 1/0345/17 of the Ministry of Education, Science, Research, and Sport of the Slovak Republic) and the Slovak Research and Development Agency (a grant under Contract No. APVV-16-0186).
Received: 10.01.2019
Revised: 22.03.2019
English version:
Theoretical and Mathematical Physics, 2019, Volume 200, Issue 3, Pages 1294–1312
DOI: https://doi.org/10.1134/S0040577919090046
Bibliographic databases:
Document Type: Article
Language: Russian
Citation: N. V. Antonov, N. M. Gulitskii, M. M. Kostenko, T. Lučivjanský, “Renormalization group analysis of models of advection of a vector admixture and a tracer field by a compressible turbulent flow”, TMF, 200:3 (2019), 429–451; Theoret. and Math. Phys., 200:3 (2019), 1294–1312
Citation in format AMSBIB
\Bibitem{AntGulKos19}
\by N.~V.~Antonov, N.~M.~Gulitskii, M.~M.~Kostenko, T.~Lu{\v{c}}ivjansk\'y
\paper Renormalization group analysis of models of advection of a~vector admixture and a~tracer field by a~compressible turbulent flow
\jour TMF
\yr 2019
\vol 200
\issue 3
\pages 429--451
\mathnet{http://mi.mathnet.ru/tmf9695}
\crossref{https://doi.org/10.4213/tmf9695}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4017620}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2019TMP...200.1294A}
\elib{https://elibrary.ru/item.asp?id=41694086}
\transl
\jour Theoret. and Math. Phys.
\yr 2019
\vol 200
\issue 3
\pages 1294--1312
\crossref{https://doi.org/10.1134/S0040577919090046}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000488949100004}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85073189395}
Linking options:
  • https://www.mathnet.ru/eng/tmf9695
  • https://doi.org/10.4213/tmf9695
  • https://www.mathnet.ru/eng/tmf/v200/i3/p429
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:275
    Full-text PDF :68
    References:28
    First page:6
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024