Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 2019, Volume 200, Number 3, Pages 399–414
DOI: https://doi.org/10.4213/tmf9686
(Mi tmf9686)
 

This article is cited in 6 scientific papers (total in 6 papers)

$(2+1)$-Dimensional gravity coupled to a dust shell: Quantization in terms of global phase space variables

A. A. Andrianov, A. N. Starodubtsev, Ya. Elmahalawy

St. Petersburg State University, St. Petersburg, Russia
Full-text PDF (454 kB) Citations (6)
References:
Abstract: We perform a canonical analysis of a model in which gravity is coupled to a spherically symmetric dust shell in $2{+}1$ space–time dimensions. The result is a reduced action depending on a finite number of degrees of freedom. We emphasize finding canonical variables supporting a global parameterization for the entire phase space of the model. It turns out that different regions of the momentum space corresponding to different branches of the solution of the Einstein equation form a single manifold in the ADS$_2$ geometry. The Euler angles support a global parameterization of that manifold. Quantization in these variables leads to noncommutativity and also to discreteness in the coordinate space, which allows resolving the central singularity. We also find the map between the ADS$_2$ momentum space obtained here and the momentum space in Kuchař variables, which could be helpful in extending the obtained results to $3{+}1$ dimensions.
Keywords: quantum gravity, thin shell, singularity removal.
Funding agency Grant number
Russian Foundation for Basic Research 18-02-00264
The research of A. A. Andrianov was supported by the Russian Foundation for Basic Research (Grant No. 18-02-00264).
Received: 18.12.2018
Revised: 11.02.2019
English version:
Theoretical and Mathematical Physics, 2019, Volume 200, Issue 3, Pages 1269–1281
DOI: https://doi.org/10.1134/S0040577919090022
Bibliographic databases:
Document Type: Article
Language: Russian
Citation: A. A. Andrianov, A. N. Starodubtsev, Ya. Elmahalawy, “$(2+1)$-Dimensional gravity coupled to a dust shell: Quantization in terms of global phase space variables”, TMF, 200:3 (2019), 399–414; Theoret. and Math. Phys., 200:3 (2019), 1269–1281
Citation in format AMSBIB
\Bibitem{AndStaElm19}
\by A.~A.~Andrianov, A.~N.~Starodubtsev, Ya.~Elmahalawy
\paper $(2+1)$-Dimensional gravity coupled to a~dust shell: Quantization in terms of global phase space variables
\jour TMF
\yr 2019
\vol 200
\issue 3
\pages 399--414
\mathnet{http://mi.mathnet.ru/tmf9686}
\crossref{https://doi.org/10.4213/tmf9686}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4017618}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2019TMP...200.1269A}
\elib{https://elibrary.ru/item.asp?id=41694744}
\transl
\jour Theoret. and Math. Phys.
\yr 2019
\vol 200
\issue 3
\pages 1269--1281
\crossref{https://doi.org/10.1134/S0040577919090022}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000488949100002}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85073265743}
Linking options:
  • https://www.mathnet.ru/eng/tmf9686
  • https://doi.org/10.4213/tmf9686
  • https://www.mathnet.ru/eng/tmf/v200/i3/p399
  • This publication is cited in the following 6 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:270
    Full-text PDF :50
    References:24
    First page:11
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024