Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 2019, Volume 200, Number 2, Pages 250–258
DOI: https://doi.org/10.4213/tmf9667
(Mi tmf9667)
 

Turbulent Prandtl number in two spatial dimensions: Two-loop renormalization group analysis

E. Jurčišinováa, M. Jurčišina, R. Remeckyab

a Institute of Experimental Physics, Slovak Academy of Sciences, Košice, Slovakia
b Bogoliubov Laboratory of Theoretical Physics, Joint Institute for Nuclear Research, Dubna, Moscow Oblast, Russia
References:
Abstract: Using the field theory renormalization group technique in the framework of the so-called double-expansion scheme, which takes additional divergences that appear in two dimensions into account, we calculate the turbulent Prandtl number in two spatial dimensions in the two-loop approximation in the model of a passive scalar field advected by the turbulent environment driven by the stochastic Navier–Stokes equation. We show that in contrast to the three-dimensional case, where the two-loop correction to the one-loop value of the turbulent Prandtl number is very small (less than $2\%$ of the one-loop value), the two-loop value of the turbulent Prandtl number in two spatial dimensions, $\mathrm{Pr_t}=0.27472$, is considerably smaller than the corresponding value $\mathrm{Pr_t}^{(1)}=0.64039$ obtained in the one-loop approximation, i.e., the two-loop correction to the turbulent Prandtl number in the two-dimensional case represents about $57\%$ of its one-loop value and must be seriously taken into account. This result also means that there is a significant difference $($at least quantitatively$)$ between diffusion processes in two- and three-dimensional turbulent environments.
Keywords: developed turbulence, passive advection, renormalization group.
Funding agency Grant number
Ministerstvo Školstva, Vedy, Výskumu a Športu Slovenskej Republiky 2/0065/17
2/0058/19
Agentúra na Podporu Výskumu a Vývoja APVV-17-0020
European Regional Development Fund ITMS-26220120029
This research was supported by VEGA (Grant Nos. 2/0065/17, 2/0058/19, and APVV-17-0020) and the realization of the project ITMS No. 26220120029 based on the supporting operational Research and Development Program financed from the European Regional Development Fund.
Received: 28.11.2018
Revised: 28.11.2018
English version:
Theoretical and Mathematical Physics, 2019, Volume 200, Issue 2, Pages 1139–1146
DOI: https://doi.org/10.1134/S0040577919080063
Bibliographic databases:
Document Type: Article
PACS: 47.27.Gs, 47.27.ef, 11.10.Hi
Language: Russian
Citation: E. Jurčišinová, M. Jurčišin, R. Remecky, “Turbulent Prandtl number in two spatial dimensions: Two-loop renormalization group analysis”, TMF, 200:2 (2019), 250–258; Theoret. and Math. Phys., 200:2 (2019), 1139–1146
Citation in format AMSBIB
\Bibitem{JurJurRem19}
\by E.~Jur{\v{c}}i{\v s}inov\'a, M.~Jur{\v{c}}i{\v s}in, R.~Remecky
\paper Turbulent Prandtl number in two spatial dimensions: Two-loop renormalization group analysis
\jour TMF
\yr 2019
\vol 200
\issue 2
\pages 250--258
\mathnet{http://mi.mathnet.ru/tmf9667}
\crossref{https://doi.org/10.4213/tmf9667}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3985736}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2019TMP...200.1139J}
\elib{https://elibrary.ru/item.asp?id=38710246}
\transl
\jour Theoret. and Math. Phys.
\yr 2019
\vol 200
\issue 2
\pages 1139--1146
\crossref{https://doi.org/10.1134/S0040577919080063}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000483801700006}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85071942266}
Linking options:
  • https://www.mathnet.ru/eng/tmf9667
  • https://doi.org/10.4213/tmf9667
  • https://www.mathnet.ru/eng/tmf/v200/i2/p250
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:237
    Full-text PDF :79
    References:29
    First page:4
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024