Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 2019, Volume 199, Number 2, Pages 302–329
DOI: https://doi.org/10.4213/tmf9661
(Mi tmf9661)
 

This article is cited in 4 scientific papers (total in 4 papers)

Nonchiral bosonization of strongly inhomogeneous Luttinger liquids

J. Das, Ch. Chowdhury, G. S. Setlur

Department of Physics, Indian Institute of Technology Guwahati, Guwahati, Assam, India
Full-text PDF (587 kB) Citations (4)
References:
Abstract: Nonchiral bosonization (NCBT) is a nontrivial modification of the standard Fermi–Bose correspondence in one spatial dimension done to facilitate studying strongly inhomogeneous Luttinger liquids where the properties of free fermions plus the source of inhomogeneities are reproduced exactly. We introduce the NCBT formalism and discuss limit case checks, fermion commutation rules, point-splitting constraints, etc. We expand the Green's functions obtained from NCBT in powers of the fermion–fermion interaction strength (only short-range forward scattering) and compare them with the corresponding terms obtained using standard fermionic perturbation theory. Finally, we substitute the Green's functions obtained from NCBT in the Schwinger–Dyson equation, which is the equation of motion of the Green's functions and serves as a nonperturbative confirmation of the method. We briefly discuss some other analytic approaches such as functional bosonization and numerical techniques like the density-matrix renormalization group, which can be used to obtain the correlation functions in one dimension.
Keywords: Luttinger liquid, Green's function, bosonization.
Funding agency Grant number
Department of Science and Technology, India DST/SERC: SR/S2/CMP/46 2009
This research was supported in part by the Department of Science and Technology, Government of India (DST/SERC: SR/S2/CMP/46 2009).
Received: 28.11.2018
Revised: 12.01.2019
English version:
Theoretical and Mathematical Physics, 2019, Volume 199, Issue 2, Pages 736–760
DOI: https://doi.org/10.1134/S0040577919050106
Bibliographic databases:
Document Type: Article
PACS: 71.10 Pm, 73.21.Hb and 11.15.Tk
Language: Russian
Citation: J. Das, Ch. Chowdhury, G. S. Setlur, “Nonchiral bosonization of strongly inhomogeneous Luttinger liquids”, TMF, 199:2 (2019), 302–329; Theoret. and Math. Phys., 199:2 (2019), 736–760
Citation in format AMSBIB
\Bibitem{DasChoSet19}
\by J.~Das, Ch.~Chowdhury, G.~S.~Setlur
\paper Nonchiral bosonization of strongly inhomogeneous Luttinger liquids
\jour TMF
\yr 2019
\vol 199
\issue 2
\pages 302--329
\mathnet{http://mi.mathnet.ru/tmf9661}
\crossref{https://doi.org/10.4213/tmf9661}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3951639}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2019TMP...199..736D}
\elib{https://elibrary.ru/item.asp?id=37460992}
\transl
\jour Theoret. and Math. Phys.
\yr 2019
\vol 199
\issue 2
\pages 736--760
\crossref{https://doi.org/10.1134/S0040577919050106}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000470335100010}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85066804963}
Linking options:
  • https://www.mathnet.ru/eng/tmf9661
  • https://doi.org/10.4213/tmf9661
  • https://www.mathnet.ru/eng/tmf/v199/i2/p302
  • This publication is cited in the following 4 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:241
    Full-text PDF :48
    References:34
    First page:11
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024