Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 2019, Volume 199, Number 3, Pages 372–398
DOI: https://doi.org/10.4213/tmf9604
(Mi tmf9604)
 

This article is cited in 3 scientific papers (total in 3 papers)

Quasiperiodic solutions of the negative-order Korteweg–de Vries hierarchy

Jinbing Chen

School of Mathematics, Southeast University, Nanjing, China
Full-text PDF (584 kB) Citations (3)
References:
Abstract: We develop a complete algorithm for deriving quasiperiodic solutions of the negative-order KdV (nKdV) hierarchy using the backward Neumann systems. Starting with the nonlinearization of a Lax pair, the nKdV hierarchy reduces to a family of backward Neumann systems via separating temporal and spatial variables. We show that the backward Neumann systems are integrable in the Liouville sense and their involutive solutions yield finite-parameter solutions of the nKdV hierarchy. We present the negative-order Novikov equation, which specifies a finite-dimensional invariant subspace of nKdV flows. Using the Abel–Jacobi variable, we integrate the nKdV flows with Abel–Jacobi solutions on the Jacobian variety of a Riemann surface. Finally, we study the Riemann–Jacobi inversion of the Abel–Jacobi solutions, whence we obtain some quasiperiodic solutions of the nKdV hierarchy.
Keywords: nKdV hierarchy, backward Neumann system, quasiperiodic solution.
Funding agency Grant number
National Natural Science Foundation of China 11471072
This research was supported by the National Natural Science Foundation of China (Grant No. 11471072).
Received: 03.07.2018
Revised: 16.10.2018
English version:
Theoretical and Mathematical Physics, 2019, Volume 199, Issue 3, Pages 798–822
DOI: https://doi.org/10.1134/S0040577919060035
Bibliographic databases:
Document Type: Article
MSC: 35Q51, 37K10, 37K20
Language: Russian
Citation: Jinbing Chen, “Quasiperiodic solutions of the negative-order Korteweg–de Vries hierarchy”, TMF, 199:3 (2019), 372–398; Theoret. and Math. Phys., 199:3 (2019), 798–822
Citation in format AMSBIB
\Bibitem{Che19}
\by Jinbing~Chen
\paper Quasiperiodic solutions of the~negative-order Korteweg--de~Vries hierarchy
\jour TMF
\yr 2019
\vol 199
\issue 3
\pages 372--398
\mathnet{http://mi.mathnet.ru/tmf9604}
\crossref{https://doi.org/10.4213/tmf9604}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3955219}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2019TMP...199..798C}
\elib{https://elibrary.ru/item.asp?id=37652226}
\transl
\jour Theoret. and Math. Phys.
\yr 2019
\vol 199
\issue 3
\pages 798--822
\crossref{https://doi.org/10.1134/S0040577919060035}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000474494400003}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85068741777}
Linking options:
  • https://www.mathnet.ru/eng/tmf9604
  • https://doi.org/10.4213/tmf9604
  • https://www.mathnet.ru/eng/tmf/v199/i3/p372
  • This publication is cited in the following 3 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:316
    Full-text PDF :53
    References:49
    First page:9
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024