Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 1997, Volume 110, Number 1, Pages 149–161
DOI: https://doi.org/10.4213/tmf959
(Mi tmf959)
 

This article is cited in 2 scientific papers (total in 2 papers)

Hamiltonian reduction of free particle motion on group $\mathrm{SL}(2,\mathbb R)$

A. V. Razumov, V. I. Yasnov

Institute for High Energy Physics
Full-text PDF (202 kB) Citations (2)
References:
Abstract: The structure of the reduced phase space arising in the Hamiltonian reduction of the phase space corresponding to a free particle motion on the group $\operatorname {SL}(2,\mathbb R)$ is investigated. In the considered reduction the constraints similar to those in the Hamiltonian reduction of the Wess–Zumino–Novikov–Witten model to Toda systems are used. It is shown that the reduced phase space is diffeomorphic either to the union of two two-dimensional planes, or to the cylinder $S^1 \times\mathbb R$. Canonical coordinates are constructed in both cases. In the first case the reduced phase space is sympectomorphic to the union of two cotangent bundles $T^*(\mathbb R)$ endowed with the canonical symplectic structure, while in the second case it is symplectomorphic to the cotangent bundle $T^*(S^1)$ also endowed with the canonical sympectic structure.
Received: 29.05.1996
English version:
Theoretical and Mathematical Physics, 1997, Volume 110, Issue 1, Pages 119–128
DOI: https://doi.org/10.1007/BF02630375
Bibliographic databases:
Language: Russian
Citation: A. V. Razumov, V. I. Yasnov, “Hamiltonian reduction of free particle motion on group $\mathrm{SL}(2,\mathbb R)$”, TMF, 110:1 (1997), 149–161; Theoret. and Math. Phys., 110:1 (1997), 119–128
Citation in format AMSBIB
\Bibitem{RazYas97}
\by A.~V.~Razumov, V.~I.~Yasnov
\paper Hamiltonian reduction of free particle motion on group $\mathrm{SL}(2,\mathbb R)$
\jour TMF
\yr 1997
\vol 110
\issue 1
\pages 149--161
\mathnet{http://mi.mathnet.ru/tmf959}
\crossref{https://doi.org/10.4213/tmf959}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1472022}
\zmath{https://zbmath.org/?q=an:0984.37086}
\transl
\jour Theoret. and Math. Phys.
\yr 1997
\vol 110
\issue 1
\pages 119--128
\crossref{https://doi.org/10.1007/BF02630375}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1997XQ00500011}
Linking options:
  • https://www.mathnet.ru/eng/tmf959
  • https://doi.org/10.4213/tmf959
  • https://www.mathnet.ru/eng/tmf/v110/i1/p149
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:412
    Full-text PDF :191
    References:50
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024