Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 2019, Volume 198, Number 2, Pages 179–214
DOI: https://doi.org/10.4213/tmf9589
(Mi tmf9589)
 

This article is cited in 20 scientific papers (total in 20 papers)

Cluster Toda chains and Nekrasov functions

M. A. Bershteinabcde, P. G. Gavrilenkobef, A. V. Marshakovbegh

a Landau Institute for Theoretical Physics, RAS, Moscow Oblast, Chernogolovka, Russia
b Center for Advanced Studies, Skoltech, Moscow, Russia
c Independent University of Moscow, Moscow, Russia
d Information Transmission Problems, RAS, Moscow, Russia
e Laboratory for Representation Theory and Mathematical Physics, Mathematics Faculty, National Research University Higher School of Economics, Moscow, Russia
f Bogolyubov Institute for Theoretical Physics, Kiev, Ukraine
g Institute for Theoretical and Experimental Physics, Moscow, Russia
h Lebedev Physical Institute, RAS, Moscow, Russia
References:
Abstract: We extend the relation between cluster integrable systems and $q$-difference equations beyond the Painlevé case. We consider the class of hyperelliptic curves where the Newton polygons contain only four boundary points. We present the corresponding cluster integrable Toda systems and identify their discrete automorphisms with certain reductions of the Hirota difference equation. We also construct nonautonomous versions of these equations and find that their solutions are expressed in terms of five-dimensional Nekrasov functions with Chern–Simons contributions, while these equations in the autonomous case are solved in terms of Riemann theta functions.
Keywords: Supersymmetric gauge theories, cluster integrable systems, q-difference Painleve equation.
Funding agency Grant number
Russian Science Foundation 16-11-10160
Russian Foundation for Basic Research 18-01-00460_а
17-51-50051
Ministry of Education and Science of the Russian Federation 5-100
Contest «Young Russian Mathematics»
The main results obtained in Sec. 2 were supported by a grant from the Russian Science Foundation (Project No. 16-11-10160).
The research of A. V. Marshakov was supported in part by the Russian Foundation for Basic research (Grant No. 17-01-00585) and an RFBR/JSPS joint project (Grant No. 17-51-50051).
This research was also supported by the Russian Academic Excellence Project "5-100."
M. A. Bershtein and P. G. Gavrylenko are Young Russian Mathematics award winners and thank its sponsors and jury.
Received: 26.04.2018
Revised: 26.04.2018
English version:
Theoretical and Mathematical Physics, 2019, Volume 198, Issue 2, Pages 157–188
DOI: https://doi.org/10.1134/S0040577919020016
Bibliographic databases:
Document Type: Article
Language: Russian
Citation: M. A. Bershtein, P. G. Gavrilenko, A. V. Marshakov, “Cluster Toda chains and Nekrasov functions”, TMF, 198:2 (2019), 179–214; Theoret. and Math. Phys., 198:2 (2019), 157–188
Citation in format AMSBIB
\Bibitem{BerGavMar19}
\by M.~A.~Bershtein, P.~G.~Gavrilenko, A.~V.~Marshakov
\paper Cluster Toda chains and Nekrasov functions
\jour TMF
\yr 2019
\vol 198
\issue 2
\pages 179--214
\mathnet{http://mi.mathnet.ru/tmf9589}
\crossref{https://doi.org/10.4213/tmf9589}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3920450}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2019TMP...198..157B}
\elib{https://elibrary.ru/item.asp?id=37045223}
\transl
\jour Theoret. and Math. Phys.
\yr 2019
\vol 198
\issue 2
\pages 157--188
\crossref{https://doi.org/10.1134/S0040577919020016}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000464906900001}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85065230970}
Linking options:
  • https://www.mathnet.ru/eng/tmf9589
  • https://doi.org/10.4213/tmf9589
  • https://www.mathnet.ru/eng/tmf/v198/i2/p179
  • This publication is cited in the following 20 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:432
    Full-text PDF :84
    References:47
    First page:25
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024