Loading [MathJax]/jax/output/SVG/config.js
Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 2018, Volume 197, Number 3, Pages 475–492
DOI: https://doi.org/10.4213/tmf9575
(Mi tmf9575)
 

This article is cited in 6 scientific papers (total in 6 papers)

Discretization of Hamiltonian systems and intersection theory

A. V. Tsiganov

Saint Petersburg State University, St. Petersburg, Russia
Full-text PDF (573 kB) Citations (6)
References:
Abstract: We discuss the possibility of using the intersection points of the common level surface of integrals of motion with an auxiliary curve to construct finite-difference equations corresponding to different discretizations of the original integrable system. As an example, we consider the generalized one-dimensional oscillator with third- and fifth-degree nonlinearity, for which we show that the intersection divisors of the hyperelliptic curve with straight lines, quadrics, and cubics generate families of integrable discrete maps.
Keywords: finite-dimensional integrable system, discrete integrable map, intersection theory.
Funding agency Grant number
Russian Science Foundation 18-11-00032
This research was supported by a grant from the Russian Science Foundation (Project No. 18-11-00032).
Received: 03.04.2018
Revised: 30.05.2018
English version:
Theoretical and Mathematical Physics, 2018, Volume 197, Issue 3, Pages 1806–1822
DOI: https://doi.org/10.1134/S0040577918120103
Bibliographic databases:
Document Type: Article
PACS: 02.30.Ik
MSC: 37J35; 70H06
Language: Russian
Citation: A. V. Tsiganov, “Discretization of Hamiltonian systems and intersection theory”, TMF, 197:3 (2018), 475–492; Theoret. and Math. Phys., 197:3 (2018), 1806–1822
Citation in format AMSBIB
\Bibitem{Tsi18}
\by A.~V.~Tsiganov
\paper Discretization of Hamiltonian systems and intersection theory
\jour TMF
\yr 2018
\vol 197
\issue 3
\pages 475--492
\mathnet{http://mi.mathnet.ru/tmf9575}
\crossref{https://doi.org/10.4213/tmf9575}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3881814}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2018TMP...197.1806T}
\elib{https://elibrary.ru/item.asp?id=36448188}
\transl
\jour Theoret. and Math. Phys.
\yr 2018
\vol 197
\issue 3
\pages 1806--1822
\crossref{https://doi.org/10.1134/S0040577918120103}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000455189700010}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85059665718}
Linking options:
  • https://www.mathnet.ru/eng/tmf9575
  • https://doi.org/10.4213/tmf9575
  • https://www.mathnet.ru/eng/tmf/v197/i3/p475
  • This publication is cited in the following 6 articles:
    1. Andrey V. Tsiganov, “Equivalent Integrable Metrics on the Sphere with Quartic Invariants”, SIGMA, 18 (2022), 094, 19 pp.  mathnet  crossref  mathscinet
    2. Alexey V. Borisov, Andrey V. Tsiganov, “On the Nonholonomic Routh Sphere in a Magnetic Field”, Regul. Chaotic Dyn., 25:1 (2020), 18–32  mathnet  crossref  mathscinet
    3. A. V. Tsiganov, “Discretization and superintegrability all rolled into one”, Nonlinearity, 33:9 (2020), 4924–4939  crossref  mathscinet  zmath  isi
    4. Chunmei Song, 2020 12th International Conference on Measuring Technology and Mechatronics Automation (ICMTMA), 2020, 909  crossref
    5. A. V. Tsiganov, “Superintegrable systems with algebraic and rational integrals of motion”, Theoret. and Math. Phys., 199:2 (2019), 659–674  mathnet  crossref  crossref  mathscinet  adsnasa  isi  elib
    6. A. V. Borisov, A. V. Tsyganov, “Vliyanie effektov Barnetta-Londona i Einshteina-de Gaaza na dvizhenie negolonomnoi sfery Rausa”, Vestn. Udmurtsk. un-ta. Matem. Mekh. Kompyut. nauki, 29:4 (2019), 583–598  mathnet  crossref
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:389
    Full-text PDF :93
    References:62
    First page:16
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025