Abstract:
Stohastic theory of fully developed turbulence is considered within the framework of the field theoretic renormalization group and short-distance expansion. The problem of verification of the Kolmogorov–Obukhov theory is discussed in connection with correlation functions of composite operators. An explicit expression for the critical dimensionality of a general composite operator is obtained. The Second Kolmogorov hypothesis (indepedence of the correlators on the viscosity) is proved for an arbitrary UV-finite composite operator. It is shown that there exists an infinite number of Galilean invariant scalar operators having negative critical dimensionalities.
Citation:
N. V. Antonov, A. N. Vasil'ev, “Renormalization group in the theory of developed turbulence. The problem of justifying the Kolmogorov hypotheses for composite operators”, TMF, 110:1 (1997), 122–136; Theoret. and Math. Phys., 110:1 (1997), 97–108
\Bibitem{AntVas97}
\by N.~V.~Antonov, A.~N.~Vasil'ev
\paper Renormalization group in the theory of developed turbulence. The problem of justifying the Kolmogorov hypotheses for composite operators
\jour TMF
\yr 1997
\vol 110
\issue 1
\pages 122--136
\mathnet{http://mi.mathnet.ru/tmf957}
\crossref{https://doi.org/10.4213/tmf957}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1472020}
\zmath{https://zbmath.org/?q=an:0919.76036}
\transl
\jour Theoret. and Math. Phys.
\yr 1997
\vol 110
\issue 1
\pages 97--108
\crossref{https://doi.org/10.1007/BF02630373}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1997XQ00500009}
Linking options:
https://www.mathnet.ru/eng/tmf957
https://doi.org/10.4213/tmf957
https://www.mathnet.ru/eng/tmf/v110/i1/p122
This publication is cited in the following 15 articles:
Hnatic M. Honkonen J. Lucivjansky T., “Symmetry Breaking in Stochastic Dynamics and Turbulence”, Symmetry-Basel, 11:10 (2019), 1193
N. V. Antonov, M. Gnatich, A. S. Kapustin, T. Lučivjanský, L. Mižišin, “Directed-bond percolation subjected to synthetic compressible velocity fluctuations: Renormalization group approach”, Theoret. and Math. Phys., 190:3 (2017), 323–334
Antonov N.V. Gulitskiy N.M. Kostenko M.M. Lucivjansky T., “Turbulent compressible fluid: Renormalization group analysis, scaling regimes, and anomalous scaling of advected scalar fields”, Phys. Rev. E, 95:3 (2017), 033120
Hnatic M. Honkonen J. Lucivjansky T., “Advanced Field-Theoretical Methods in Stochastic Dynamics and Theory of Developed Turbulence”, Acta Phys. Slovaca, 66:2-3 (2016), 69–265
Antonov N.V. Kostenko M.M., “Anomalous Scaling of Passive Scalar Fields Advected By the Navier–Stokes Velocity Ensemble: Effects of Strong Compressibility and Large-Scale Anisotropy”, Phys. Rev. E, 90:6 (2014), 063016
L Ts Adzhemyan, N V Antonov, P B Gol'din, M V Kompaniets, “Anomalous scaling of a passive vector field inddimensions: higher order structure functions”, J. Phys. A: Math. Theor., 46:13 (2013), 135002
Adzhemyan L.T., Antonov N.V., Honkonen J., Kim T.L., “Anomalous scaling of a passive scalar advected by the Navier–Stokes velocity field: Two-loop approximation”, Phys. Rev. E (3), 71:1 (2005), 016303, 20 pp.
Adzhemyan L.Ts., Antonov N.V., Kompaniets M.V., Vasil'ev A.N., “Renormalization-group approach to the stochastic Navier–Stokes equation: two-loop approximation”, Int. J. Mod. Phys. B, 17:10 (2003), 2137–2170
Adzhemyan L.T., Antonov N.V., Hnatich M., Novikov S.V., “Anomalous scaling of a passive scalar in the presence of strong anisotropy”, Phys. Rev. E (3), 63:2 (2001), 016309
L. Ts. Adzhemyan, N. V. Antonov, M. Hnatich, S. V. Novikov, “Anomalous scaling of a passive scalar in the presence of strong anisotropy”, Phys. Rev. E, 63:1 (2000)
Antonov N.V., “Anomalous scaling regimes of a passive scalar advected by the synthetic velocity field”, Phys. Rev. E (3), 60:6 (1999), 6691–6707
Antonov N.V., Hnatich M., Nalimov M.Yu., “Influence of compressibility on scaling regimes of strongly anisotropic fully developed turbulence”, Phys. Rev. E (3), 60:4 (1999), 4043–4051
L. Ts. Adzhemyan, N. V. Antonov, “Renormalization group in turbulence theory: Exactly solvable Heisenberg model”, Theoret. and Math. Phys., 115:2 (1998), 562–574
Adzhemyan L.T., Antonov N.V., Vasil'ev A.N., “Renormalization group, operator product expansion, and anomalous scaling in a model of advected passive scalar”, Phys. Rev. E (3), 58:2, Part A (1998), 1823–1835
Adzhemyan L.Ts., Antonov N.V., Vasilev A.N., “Kvantovo-polevaya renormalizatsionnaya gruppa v teorii razvitoi turbulentnosti”, UFN, 166:12 (1996), 1257–1284