Abstract:
We describe the topology of isoenergetic surfaces for an integrable system
on the Lie algebra $so(3,1)$ and the critical points of the Hamiltonian for
different parameter values. We construct bifurcation values of the Hamiltonian.
Citation:
R. Akbarzadeh, “The topology of isoenergetic surfaces for the Borisov–Mamaev–Sokolov integrable case on the Lie algebra $so(3,1)$”, TMF, 197:3 (2018), 385–396; Theoret. and Math. Phys., 197:3 (2018), 1727–1736
\Bibitem{Akb18}
\by R.~Akbarzadeh
\paper The~topology of isoenergetic surfaces for the~Borisov--Mamaev--Sokolov integrable case on the~Lie algebra $so(3,1)$
\jour TMF
\yr 2018
\vol 197
\issue 3
\pages 385--396
\mathnet{http://mi.mathnet.ru/tmf9560}
\crossref{https://doi.org/10.4213/tmf9560}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3881808}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2018TMP...197.1727A}
\elib{https://elibrary.ru/item.asp?id=36448168}
\transl
\jour Theoret. and Math. Phys.
\yr 2018
\vol 197
\issue 3
\pages 1727--1736
\crossref{https://doi.org/10.1134/S0040577918120048}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000455189700004}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85059784529}
Linking options:
https://www.mathnet.ru/eng/tmf9560
https://doi.org/10.4213/tmf9560
https://www.mathnet.ru/eng/tmf/v197/i3/p385
This publication is cited in the following 2 articles:
V. D. Irtegov, T. N. Titorenko, “Ob odnom podkhode k kachestvennomu issledovaniyu nelineinykh dinamicheskikh sistem”, Sib. zhurn. vychisl. matem., 25:1 (2022), 59–75
V. D. Irtegov, T. N. Titorenko, “On an Approach to Qualitative Analysis of Nonlinear Dynamic Systems”, Numer. Analys. Appl., 15:1 (2022), 48