|
This article is cited in 2 scientific papers (total in 2 papers)
The topology of isoenergetic surfaces for the Borisov–Mamaev–Sokolov integrable case on the Lie algebra $so(3,1)$
R. Akbarzadeh School of Mathematics, Institute for Research in Fundamental Sciences, Tehran, Iran
Abstract:
We describe the topology of isoenergetic surfaces for an integrable system
on the Lie algebra $so(3,1)$ and the critical points of the Hamiltonian for
different parameter values. We construct bifurcation values of the Hamiltonian.
Keywords:
topology, integrable Hamiltonian system, isoenergetic surface, critical set, bifurcation diagram.
Received: 03.03.2018
Citation:
R. Akbarzadeh, “The topology of isoenergetic surfaces for the Borisov–Mamaev–Sokolov integrable case on the Lie algebra $so(3,1)$”, TMF, 197:3 (2018), 385–396; Theoret. and Math. Phys., 197:3 (2018), 1727–1736
Linking options:
https://www.mathnet.ru/eng/tmf9560https://doi.org/10.4213/tmf9560 https://www.mathnet.ru/eng/tmf/v197/i3/p385
|
Statistics & downloads: |
Abstract page: | 397 | Full-text PDF : | 74 | References: | 34 | First page: | 7 |
|