Loading [MathJax]/jax/output/CommonHTML/jax.js
Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 2019, Volume 198, Number 1, Pages 54–78
DOI: https://doi.org/10.4213/tmf9557
(Mi tmf9557)
 

This article is cited in 12 scientific papers (total in 12 papers)

Geometric solutions of the strict KP hierarchy

G. F. Helmincka, E. A. Panasenkob

a Korteweg-de Vries Institute for Mathematics, University of Amsterdam, Amsterdam, The Netherlands
b Derzhavin State University, Tambov, Russia
References:
Abstract: Splitting the algebra Psd of pseudodifferential operators into the Lie subalgebra of all differential operators without a constant term and the Lie subalgebra of all integral operators leads to an integrable hierarchy called the strict KP hierarchy. We consider two Psd modules, a linearization of the strict KP hierarchy and its dual, which play an essential role in constructing solutions geometrically. We characterize special vectors, called wave functions, in these modules; these vectors lead to solutions. We describe a relation between the KP hierarchy and its strict version and present an infinite-dimensional manifold from which these special vectors can be obtained. We show how a solution of the strict KP hierarchy can be constructed for any subspace W in the Segal–Wilson Grassmannian of a Hilbert space and any line in W. Moreover, we describe the dual wave function geometrically and present a group of commuting flows that leave the found solutions invariant.
Keywords: pseudodifferential operator, KP hierarchy, strict KP hierarchy, (dual) linearization, (dual) oscillating function, (dual) wave function, Grassmannian.
Funding agency Grant number
Ministry of Education and Science of the Russian Federation 3.8515.2017/8.9
Russian Foundation for Basic Research 17-01-00553
This research was supported in part by the Ministry of Education and Science of the Russian Federation (Grant No. 3.8515.2017/8.9 in the framework of the base part of the Government order) and the Russian Foundation for Basic Research (Grant No. 17-01-00553).
Received: 20.02.2018
Revised: 26.04.2018
English version:
Theoretical and Mathematical Physics, 2019, Volume 198, Issue 1, Pages 48–68
DOI: https://doi.org/10.1134/S0040577919010045
Bibliographic databases:
Document Type: Article
Language: Russian
Citation: G. F. Helminck, E. A. Panasenko, “Geometric solutions of the strict KP hierarchy”, TMF, 198:1 (2019), 54–78; Theoret. and Math. Phys., 198:1 (2019), 48–68
Citation in format AMSBIB
\Bibitem{HelPan19}
\by G.~F.~Helminck, E.~A.~Panasenko
\paper Geometric solutions of the~strict KP hierarchy
\jour TMF
\yr 2019
\vol 198
\issue 1
\pages 54--78
\mathnet{http://mi.mathnet.ru/tmf9557}
\crossref{https://doi.org/10.4213/tmf9557}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3894486}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2019TMP...198...48H}
\elib{https://elibrary.ru/item.asp?id=36603929}
\transl
\jour Theoret. and Math. Phys.
\yr 2019
\vol 198
\issue 1
\pages 48--68
\crossref{https://doi.org/10.1134/S0040577919010045}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000464906700004}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85065233558}
Linking options:
  • https://www.mathnet.ru/eng/tmf9557
  • https://doi.org/10.4213/tmf9557
  • https://www.mathnet.ru/eng/tmf/v198/i1/p54
  • This publication is cited in the following 12 articles:
    1. G. F. Helminck, J. A. Weenink, “LU Factorizations for ℕ × ℕ-Matrices and Solutions of the k[S]-Hierarchy and Its Strict Version”, Geometry, 2:2 (2025), 4  crossref
    2. Aloysius G. Helminck, Gerardus F. Helminck, “A construction of solutions of an integrable deformation of a commutative Lie algebra of skew hermitian Z×Z-matrices”, Indagationes Mathematicae, 2024  crossref
    3. G. F. Helminck, V. A. Poberezhny, S. V. Polenkova, “Darboux transformations for the discrete versions of the KP and strict KP hierarchies”, Theoret. and Math. Phys., 221:3 (2024), 2031–2048  mathnet  crossref  crossref  adsnasa
    4. G. F. Helminck, V. A. Poberezhny, S. V. Polenkova, “Connecting KP and Strict KP with Their Discrete Versions”, Lobachevskii J Math, 45:10 (2024), 4644  crossref
    5. G. F. Helminck, E. A. Panasenko, “Darboux transformations for the strict KP hierarchy”, Theoret. and Math. Phys., 206:3 (2021), 296–314  mathnet  crossref  crossref  mathscinet  adsnasa  isi
    6. G. F. Helminck, J. A. Weenink, “Homogeneous spaces yielding solutions of the $k[S]$-hierarchy and its strict version”, Vestnik rossiiskikh universitetov. Matematika, 26:135 (2021), 315–336  mathnet  crossref
    7. G. F. Helminck, V. A. Poberezhny, S. V. Polenkova, “Extensions of the discrete KP hierarchy and its strict version”, Theoret. and Math. Phys., 204:3 (2020), 1140–1153  mathnet  crossref  crossref  mathscinet  adsnasa  isi  elib
    8. G. F. Helminck, E. A. Panasenko, “Reductions of the strict KP hierarchy”, Theoret. and Math. Phys., 205:2 (2020), 1411–1425  mathnet  crossref  crossref  mathscinet  adsnasa  isi  elib
    9. G. F. Khelmink, E. A. Panasenko, “Svoistva algebry psevdodifferentsialnykh operatorov, svyazannye s integriruemymi ierarkhiyami”, Vestnik rossiiskikh universitetov. Matematika, 25:130 (2020), 183–195  mathnet  crossref
    10. G. F. Helminck, E. A. Panasenko, “Scaling invariance of the strict KP hierarchy”, Vestnik rossiiskikh universitetov. Matematika, 25:131 (2020), 331–340  mathnet  crossref
    11. G. F. Helminck, E. A. Panasenko, “Expressions in Fredholm determinants for solutions of the strict KP hierarchy”, Theoret. and Math. Phys., 199:2 (2019), 637–651  mathnet  crossref  crossref  mathscinet  adsnasa  isi  elib
    12. Helminck G.F., Poberezhny V.A., Polenkova S.V., “A Geometric Construction of Solutions of the Strict Dkp(Lambda(0)) Hierarchy”, J. Geom. Phys., 131 (2018), 189–203  crossref  mathscinet  zmath  isi  scopus
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:390
    Full-text PDF :103
    References:53
    First page:11
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025