Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 2019, Volume 198, Number 2, Pages 292–308
DOI: https://doi.org/10.4213/tmf9553
(Mi tmf9553)
 

This article is cited in 4 scientific papers (total in 4 papers)

Toward an analytic perturbative solution for the ABJM quantum spectral curve

R. N. Leea, A. I. Onischenkobcd

a Budker Institute of Nuclear Physics, Novosibirsk, Russia
b Bogoliubov Laboratory of Theoretical Physics, Joint Institute for Nuclear Research, Dubna, Moscow Oblast, Russia
c Moscow Institute of Physics and Technology (State University), Dolgoprudny, Moscow Oblast, Russia
d Moscow State University, Moscow, Russia, Skobeltsyn Institute of Nuclear Physics
Full-text PDF (557 kB) Citations (4)
References:
Abstract: We recently showed how nonhomogeneous second-order difference equations that appear in describing the ABJM quantum spectral curve can be solved using a Mellin space technique. In particular, we provided explicit results for anomalous dimensions of twist-$1$ operators in the $sl(2)$ sector at arbitrary spin values up to the four-loop order. We showed that the obtained results can be expressed in terms of harmonic sums with additional factors in the form of a fourth root of unity, and the maximum transcendentality principle therefore holds. Here, we show that the same result can also be obtained by directly solving the mentioned difference equations in the space of the spectral parameter $u$. The solution involves new highly nontrivial identities between hypergeometric functions, which can have various applications. We expect that this method can be generalized both to higher loop orders and to other theories, such as the $\mathcal N=4$ supersymmetric Yang–Mills theory.
Keywords: quantum spectral curve, spin chain, anomalous dimension, ABJM model, Baxter equation.
Received: 20.02.2018
Revised: 20.06.2018
English version:
Theoretical and Mathematical Physics, 2019, Volume 198, Issue 2, Pages 256–270
DOI: https://doi.org/10.1134/S0040577919020077
Bibliographic databases:
Document Type: Article
Language: Russian
Citation: R. N. Lee, A. I. Onischenko, “Toward an analytic perturbative solution for the ABJM quantum spectral curve”, TMF, 198:2 (2019), 292–308; Theoret. and Math. Phys., 198:2 (2019), 256–270
Citation in format AMSBIB
\Bibitem{LeeOni19}
\by R.~N.~Lee, A.~I.~Onischenko
\paper Toward an~analytic perturbative solution for the~ABJM quantum spectral curve
\jour TMF
\yr 2019
\vol 198
\issue 2
\pages 292--308
\mathnet{http://mi.mathnet.ru/tmf9553}
\crossref{https://doi.org/10.4213/tmf9553}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3920456}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2019TMP...198..256L}
\elib{https://elibrary.ru/item.asp?id=37045231}
\transl
\jour Theoret. and Math. Phys.
\yr 2019
\vol 198
\issue 2
\pages 256--270
\crossref{https://doi.org/10.1134/S0040577919020077}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000464906900007}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85065223740}
Linking options:
  • https://www.mathnet.ru/eng/tmf9553
  • https://doi.org/10.4213/tmf9553
  • https://www.mathnet.ru/eng/tmf/v198/i2/p292
  • This publication is cited in the following 4 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:269
    Full-text PDF :51
    References:33
    First page:5
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024