Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 2018, Volume 197, Number 2, Pages 269–278
DOI: https://doi.org/10.4213/tmf9552
(Mi tmf9552)
 

This article is cited in 8 scientific papers (total in 8 papers)

Asymptotics of wave functions of the stationary Schrödinger equation in the Weyl chamber

S. Yu. Dobrokhotovab, D. S. Minenkova, S. B. Shlosmancde

a Ishlinsky Institute for Problems of Mechanics, Moscow, Russia
b Moscow Institute of Physics and Technology (State University), Dolgoprudny, Russia
c Skolkovo Institute of Science and Technology, Москва, Россия
d Aix Marseille Université, Université de Toulon, CNRS, CPT, Marseille, France
e Kharkevich Institute for Information Transmission Problems, RAS, Moscow, Russia
Full-text PDF (709 kB) Citations (8)
References:
Abstract: We study stationary solutions of the Schrödinger equation with a monotonic potential $U$ in a polyhedral angle (Weyl chamber) with the Dirichlet boundary condition. The potential has the form $U(\mathbf x)=\sum_{j=1}^nV(x_j)$, ${\mathbf x=(x_1,\dots,x_n)\in\mathbb R^n}$, with a monotonically increasing function $V(y)$. We construct semiclassical asymptotic formulas for eigenvalues and eigenfunctions in the form of the Slater determinant composed of Airy functions with arguments depending nonlinearly on $x_j$. We propose a method for implementing the Maslov canonical operator in the form of the Airy function based on canonical transformations.
Keywords: stationary Schrödinger equation, boundary value problem, Weyl-chamber-type polyhedral angle, spectrum, quantization condition, Maslov canonical operator, Airy function.
Funding agency Grant number
Russian Foundation for Basic Research 17-51-150006
This research is supported by the Russian Foundation for Basic Research–CNRS (Grant No. 17-51-150006).
Received: 16.02.2018
English version:
Theoretical and Mathematical Physics, 2018, Volume 197, Issue 2, Pages 1626–1634
DOI: https://doi.org/10.1134/S0040577918110065
Bibliographic databases:
Document Type: Article
PACS: 03
MSC: 34E20, 34B05
Language: Russian
Citation: S. Yu. Dobrokhotov, D. S. Minenkov, S. B. Shlosman, “Asymptotics of wave functions of the stationary Schrödinger equation in the Weyl chamber”, TMF, 197:2 (2018), 269–278; Theoret. and Math. Phys., 197:2 (2018), 1626–1634
Citation in format AMSBIB
\Bibitem{DobMinShl18}
\by S.~Yu.~Dobrokhotov, D.~S.~Minenkov, S.~B.~Shlosman
\paper Asymptotics of wave functions of the~stationary Schr\"odinger equation in the~Weyl chamber
\jour TMF
\yr 2018
\vol 197
\issue 2
\pages 269--278
\mathnet{http://mi.mathnet.ru/tmf9552}
\crossref{https://doi.org/10.4213/tmf9552}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3871560}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2018TMP...197.1626D}
\elib{https://elibrary.ru/item.asp?id=36361392}
\transl
\jour Theoret. and Math. Phys.
\yr 2018
\vol 197
\issue 2
\pages 1626--1634
\crossref{https://doi.org/10.1134/S0040577918110065}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000453068400006}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85058181574}
Linking options:
  • https://www.mathnet.ru/eng/tmf9552
  • https://doi.org/10.4213/tmf9552
  • https://www.mathnet.ru/eng/tmf/v197/i2/p269
  • This publication is cited in the following 8 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:448
    Full-text PDF :116
    References:54
    First page:30
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024