Loading [MathJax]/jax/output/SVG/config.js
Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 2018, Volume 197, Number 2, Pages 269–278
DOI: https://doi.org/10.4213/tmf9552
(Mi tmf9552)
 

This article is cited in 8 scientific papers (total in 8 papers)

Asymptotics of wave functions of the stationary Schrödinger equation in the Weyl chamber

S. Yu. Dobrokhotovab, D. S. Minenkova, S. B. Shlosmancde

a Ishlinsky Institute for Problems of Mechanics, Moscow, Russia
b Moscow Institute of Physics and Technology (State University), Dolgoprudny, Russia
c Skolkovo Institute of Science and Technology, Москва, Россия
d Aix Marseille Université, Université de Toulon, CNRS, CPT, Marseille, France
e Kharkevich Institute for Information Transmission Problems, RAS, Moscow, Russia
Full-text PDF (709 kB) Citations (8)
References:
Abstract: We study stationary solutions of the Schrödinger equation with a monotonic potential $U$ in a polyhedral angle (Weyl chamber) with the Dirichlet boundary condition. The potential has the form $U(\mathbf x)=\sum_{j=1}^nV(x_j)$, ${\mathbf x=(x_1,\dots,x_n)\in\mathbb R^n}$, with a monotonically increasing function $V(y)$. We construct semiclassical asymptotic formulas for eigenvalues and eigenfunctions in the form of the Slater determinant composed of Airy functions with arguments depending nonlinearly on $x_j$. We propose a method for implementing the Maslov canonical operator in the form of the Airy function based on canonical transformations.
Keywords: stationary Schrödinger equation, boundary value problem, Weyl-chamber-type polyhedral angle, spectrum, quantization condition, Maslov canonical operator, Airy function.
Funding agency Grant number
Russian Foundation for Basic Research 17-51-150006
This research is supported by the Russian Foundation for Basic Research–CNRS (Grant No. 17-51-150006).
Received: 16.02.2018
English version:
Theoretical and Mathematical Physics, 2018, Volume 197, Issue 2, Pages 1626–1634
DOI: https://doi.org/10.1134/S0040577918110065
Bibliographic databases:
Document Type: Article
PACS: 03
MSC: 34E20, 34B05
Language: Russian
Citation: S. Yu. Dobrokhotov, D. S. Minenkov, S. B. Shlosman, “Asymptotics of wave functions of the stationary Schrödinger equation in the Weyl chamber”, TMF, 197:2 (2018), 269–278; Theoret. and Math. Phys., 197:2 (2018), 1626–1634
Citation in format AMSBIB
\Bibitem{DobMinShl18}
\by S.~Yu.~Dobrokhotov, D.~S.~Minenkov, S.~B.~Shlosman
\paper Asymptotics of wave functions of the~stationary Schr\"odinger equation in the~Weyl chamber
\jour TMF
\yr 2018
\vol 197
\issue 2
\pages 269--278
\mathnet{http://mi.mathnet.ru/tmf9552}
\crossref{https://doi.org/10.4213/tmf9552}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3871560}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2018TMP...197.1626D}
\elib{https://elibrary.ru/item.asp?id=36361392}
\transl
\jour Theoret. and Math. Phys.
\yr 2018
\vol 197
\issue 2
\pages 1626--1634
\crossref{https://doi.org/10.1134/S0040577918110065}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000453068400006}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85058181574}
Linking options:
  • https://www.mathnet.ru/eng/tmf9552
  • https://doi.org/10.4213/tmf9552
  • https://www.mathnet.ru/eng/tmf/v197/i2/p269
  • This publication is cited in the following 8 articles:
    1. D. S. Minenkov, S. A. Sergeev, “Asymptotics of the whispering gallery-type in the eigenproblem for the Laplacian in a domain of revolution diffeomorphic to a solid torus”, Russ. J. Math. Phys., 30:4 (2023), 599  crossref  mathscinet
    2. S. Yu. Dobrokhotov, A. V. Tsvetkova, “An approach to finding the asymptotics of polynomials given by recurrence relations”, Russ. J. Math. Phys., 28:2 (2021), 198–223  crossref  mathscinet  isi
    3. Sergei Yu. Dobrokhotov, Dmitrii S. Minenkov, Anatoly I. Neishtadt, Semen B. Shlosman, “Classical and Quantum Dynamics of a Particle in a Narrow Angle”, Regul. Chaotic Dyn., 24:6 (2019), 704–716  mathnet  crossref
    4. A. Yu. Anikin, S. Yu. Dobrokhotov, V. E. Nazaikinskii, A. V. Tsvetkova, “Uniform asymptotic solution in the form of an Airy function for semiclassical bound states in one-dimensional and radially symmetric problems”, Theoret. and Math. Phys., 201:3 (2019), 1742–1770  mathnet  crossref  crossref  mathscinet  isi  elib
    5. A. I. Klevin, “Asymptotic eigenfunctions of the “bouncing ball” type for the two-dimensional Schrödinger operator with a symmetric potential”, Theoret. and Math. Phys., 199:3 (2019), 849–863  mathnet  crossref  crossref  mathscinet  adsnasa  isi  elib
    6. Pietro Caputo, Dmitry Ioffe, Vitali Wachtel, Springer Proceedings in Mathematics & Statistics, 293, Statistical Mechanics of Classical and Disordered Systems, 2019, 241  crossref
    7. Dobrokhotov S.Yu., Nazaikinskii V.E., “Efficient Formulas For the Maslov Canonical Operator Near a Simple Caustic”, Russ. J. Math. Phys., 25:4 (2018), 545–552  crossref  mathscinet  zmath  isi
    8. S. Yu. Dobrokhotov, A. V. Tsvetkova, “Lagrangian Manifolds Related to the Asymptotics of Hermite Polynomials”, Math. Notes, 104:6 (2018), 810–822  mathnet  mathnet  crossref  crossref  mathscinet  isi  scopus
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:513
    Full-text PDF :145
    References:67
    First page:30
     
      Contact us:
    math-net2025_04@mi-ras.ru
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025