Loading [MathJax]/jax/output/SVG/config.js
Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 2019, Volume 198, Number 1, Pages 162–174
DOI: https://doi.org/10.4213/tmf9551
(Mi tmf9551)
 

This article is cited in 5 scientific papers (total in 5 papers)

Construction of the Gelfand–Tsetlin basis for unitary principal series representations of the algebra $sl_n(\mathbb C)$

P. A. Valinevich

St. Petersburg Department of Steklov Mathematical Institute of Russian Academy of Sciences, St. Petersburg, Russia
Full-text PDF (434 kB) Citations (5)
References:
Abstract: We consider infinite-dimensional unitary principal series representations of the algebra $sl_n(\mathbb C)$, implemented on the space of functions of $n(n{-}1)/2$ complex variables. For such representations, the elements of the Gelfand–Tsetlin basis are defined as the eigenfunctions of a certain system of quantum minors. The parameters of these functions, in contrast to the finite-dimensional case, take a continuous series of values. We obtain explicit formulas that allow constructing these functions recursively in the rank of the algebra $n$. The main construction elements are operators intertwining equivalent representations and also a group operator of a special type. We demonstrate how the recurrence relations work in the case of small ranks.
Keywords: Gelfand–Tsetlin basis, intertwining operator, unitary principal series representation.
Funding agency Grant number
Russian Science Foundation 14-11-00598
This research is supported by a grant from the Russian Science Foundation (Project No. 14-11-00598).
Received: 19.02.2018
Revised: 19.02.2018
English version:
Theoretical and Mathematical Physics, 2019, Volume 198, Issue 1, Pages 145–155
DOI: https://doi.org/10.1134/S0040577919010100
Bibliographic databases:
Document Type: Article
Language: Russian
Citation: P. A. Valinevich, “Construction of the Gelfand–Tsetlin basis for unitary principal series representations of the algebra $sl_n(\mathbb C)$”, TMF, 198:1 (2019), 162–174; Theoret. and Math. Phys., 198:1 (2019), 145–155
Citation in format AMSBIB
\Bibitem{Val19}
\by P.~A.~Valinevich
\paper Construction of the~Gelfand--Tsetlin basis for unitary principal
series representations of the~algebra $sl_n(\mathbb C)$
\jour TMF
\yr 2019
\vol 198
\issue 1
\pages 162--174
\mathnet{http://mi.mathnet.ru/tmf9551}
\crossref{https://doi.org/10.4213/tmf9551}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3894492}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2019TMP...198..145V}
\elib{https://elibrary.ru/item.asp?id=36603944}
\transl
\jour Theoret. and Math. Phys.
\yr 2019
\vol 198
\issue 1
\pages 145--155
\crossref{https://doi.org/10.1134/S0040577919010100}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000464906700010}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85065229767}
Linking options:
  • https://www.mathnet.ru/eng/tmf9551
  • https://doi.org/10.4213/tmf9551
  • https://www.mathnet.ru/eng/tmf/v198/i1/p162
  • This publication is cited in the following 5 articles:
    1. E. A. Movchan, “Bazis Gelfanda–Tsetlina dlya neprivodimykh predstavlenii beskonechnomernoi polnoi lineinoi gruppy”, Voprosy kvantovoi teorii polya i statisticheskoi fiziki. 30, Zap. nauchn. sem. POMI, 532, POMI, SPb., 2024, 235–256  mathnet
    2. Izv. Math., 87:6 (2023), 1117–1147  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi
    3. P. V. Antonenko, “The Gelfand–Tsetlin basis for infinite-dimensional representations of $gl_n(\mathbb{C})$”, J. Phys. A: Math. Theor., 55:22 (2022), 225201  crossref
    4. D. V. Artamonov, “A Gelfand–Tsetlin-type basis for the algebra $\mathfrak{sp}_4$ and hypergeometric functions”, Theoret. and Math. Phys., 206:3 (2021), 243–257  mathnet  crossref  crossref  mathscinet  adsnasa  isi
    5. Ryan P., Volin D., “Separation of Variables For Rational Gl(N) Spin Chains in Any Compact Representation, Via Fusion, Embedding Morphism and Backlund Flow”, Commun. Math. Phys., 383:1 (2021), 311–343  crossref  mathscinet  isi
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:444
    Full-text PDF :138
    References:59
    First page:11
     
      Contact us:
    math-net2025_04@mi-ras.ru
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025