Abstract:
We consider infinite-dimensional unitary principal series representations of the algebra $sl_n(\mathbb C)$, implemented on the space of functions of $n(n{-}1)/2$ complex variables. For such representations, the elements of the Gelfand–Tsetlin basis are defined as the eigenfunctions of a certain system of quantum minors. The parameters of these functions, in contrast to the finite-dimensional case, take a continuous series of values. We obtain explicit formulas that allow constructing these functions recursively in the rank of the algebra $n$. The main construction elements are operators intertwining equivalent representations and also a group operator of a special type. We demonstrate how the recurrence relations work in the case of small ranks.
Keywords:
Gelfand–Tsetlin basis, intertwining operator,
unitary principal series representation.
Citation:
P. A. Valinevich, “Construction of the Gelfand–Tsetlin basis for unitary principal
series representations of the algebra $sl_n(\mathbb C)$”, TMF, 198:1 (2019), 162–174; Theoret. and Math. Phys., 198:1 (2019), 145–155
\Bibitem{Val19}
\by P.~A.~Valinevich
\paper Construction of the~Gelfand--Tsetlin basis for unitary principal
series representations of the~algebra $sl_n(\mathbb C)$
\jour TMF
\yr 2019
\vol 198
\issue 1
\pages 162--174
\mathnet{http://mi.mathnet.ru/tmf9551}
\crossref{https://doi.org/10.4213/tmf9551}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3894492}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2019TMP...198..145V}
\elib{https://elibrary.ru/item.asp?id=36603944}
\transl
\jour Theoret. and Math. Phys.
\yr 2019
\vol 198
\issue 1
\pages 145--155
\crossref{https://doi.org/10.1134/S0040577919010100}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000464906700010}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85065229767}
Linking options:
https://www.mathnet.ru/eng/tmf9551
https://doi.org/10.4213/tmf9551
https://www.mathnet.ru/eng/tmf/v198/i1/p162
This publication is cited in the following 5 articles:
E. A. Movchan, “Bazis Gelfanda–Tsetlina dlya neprivodimykh predstavlenii beskonechnomernoi polnoi lineinoi gruppy”, Voprosy kvantovoi teorii polya i statisticheskoi fiziki. 30, Zap. nauchn. sem. POMI, 532, POMI, SPb., 2024, 235–256
Izv. Math., 87:6 (2023), 1117–1147
P. V. Antonenko, “The Gelfand–Tsetlin basis for infinite-dimensional representations of $gl_n(\mathbb{C})$”, J. Phys. A: Math. Theor., 55:22 (2022), 225201
D. V. Artamonov, “A Gelfand–Tsetlin-type basis for the algebra $\mathfrak{sp}_4$ and
hypergeometric functions”, Theoret. and Math. Phys., 206:3 (2021), 243–257
Ryan P., Volin D., “Separation of Variables For Rational Gl(N) Spin Chains in Any Compact Representation, Via Fusion, Embedding Morphism and Backlund Flow”, Commun. Math. Phys., 383:1 (2021), 311–343