Abstract:
We consider infinite-dimensional unitary principal series representations of the algebra sln(C), implemented on the space of functions of n(n−1)/2 complex variables. For such representations, the elements of the Gelfand–Tsetlin basis are defined as the eigenfunctions of a certain system of quantum minors. The parameters of these functions, in contrast to the finite-dimensional case, take a continuous series of values. We obtain explicit formulas that allow constructing these functions recursively in the rank of the algebra n. The main construction elements are operators intertwining equivalent representations and also a group operator of a special type. We demonstrate how the recurrence relations work in the case of small ranks.
Keywords:
Gelfand–Tsetlin basis, intertwining operator,
unitary principal series representation.
Citation:
P. A. Valinevich, “Construction of the Gelfand–Tsetlin basis for unitary principal
series representations of the algebra sln(C)”, TMF, 198:1 (2019), 162–174; Theoret. and Math. Phys., 198:1 (2019), 145–155
\Bibitem{Val19}
\by P.~A.~Valinevich
\paper Construction of the~Gelfand--Tsetlin basis for unitary principal
series representations of the~algebra $sl_n(\mathbb C)$
\jour TMF
\yr 2019
\vol 198
\issue 1
\pages 162--174
\mathnet{http://mi.mathnet.ru/tmf9551}
\crossref{https://doi.org/10.4213/tmf9551}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3894492}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2019TMP...198..145V}
\elib{https://elibrary.ru/item.asp?id=36603944}
\transl
\jour Theoret. and Math. Phys.
\yr 2019
\vol 198
\issue 1
\pages 145--155
\crossref{https://doi.org/10.1134/S0040577919010100}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000464906700010}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85065229767}
Linking options:
https://www.mathnet.ru/eng/tmf9551
https://doi.org/10.4213/tmf9551
https://www.mathnet.ru/eng/tmf/v198/i1/p162
This publication is cited in the following 5 articles:
E. A. Movchan, “Bazis Gelfanda–Tsetlina dlya neprivodimykh predstavlenii beskonechnomernoi polnoi lineinoi gruppy”, Voprosy kvantovoi teorii polya i statisticheskoi fiziki. 30, Zap. nauchn. sem. POMI, 532, POMI, SPb., 2024, 235–256
Izv. Math., 87:6 (2023), 1117–1147
P. V. Antonenko, “The Gelfand–Tsetlin basis for infinite-dimensional representations of $gl_n(\mathbb{C})$”, J. Phys. A: Math. Theor., 55:22 (2022), 225201
D. V. Artamonov, “A Gelfand–Tsetlin-type basis for the algebra $\mathfrak{sp}_4$ and
hypergeometric functions”, Theoret. and Math. Phys., 206:3 (2021), 243–257
Ryan P., Volin D., “Separation of Variables For Rational Gl(N) Spin Chains in Any Compact Representation, Via Fusion, Embedding Morphism and Backlund Flow”, Commun. Math. Phys., 383:1 (2021), 311–343