Abstract:
The $L$–$A$ pair corresponding to the boundary value problem with the condition $u|_{x=0}=a$ for the KdV equation is presented. A broad class of exact solutions to this equation is constructed and the conservation laws are discussed.
Citation:
V. E. Adler, I. T. Habibullin, A. B. Shabat, “Boundary value problem for the KdV equation on a half-line”, TMF, 110:1 (1997), 98–113; Theoret. and Math. Phys., 110:1 (1997), 78–90
\Bibitem{AdlHabSha97}
\by V.~E.~Adler, I.~T.~Habibullin, A.~B.~Shabat
\paper Boundary value problem for the KdV equation on a half-line
\jour TMF
\yr 1997
\vol 110
\issue 1
\pages 98--113
\mathnet{http://mi.mathnet.ru/tmf955}
\crossref{https://doi.org/10.4213/tmf955}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1472018}
\zmath{https://zbmath.org/?q=an:0916.35100}
\transl
\jour Theoret. and Math. Phys.
\yr 1997
\vol 110
\issue 1
\pages 78--90
\crossref{https://doi.org/10.1007/BF02630371}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1997XQ00500007}
Linking options:
https://www.mathnet.ru/eng/tmf955
https://doi.org/10.4213/tmf955
https://www.mathnet.ru/eng/tmf/v110/i1/p98
This publication is cited in the following 23 articles:
Dianlou Du, Xue Wang, “A new finite-dimensional Hamiltonian systems with a mixed Poisson structure for the KdV equation”, Theoret. and Math. Phys., 211:3 (2022), 745–757
Dubrovsky V.G., Topovsky V A., “Multi-Soliton Solutions of Kp Equation With Integrable Boundary Via Partial Differential -Dressing Method”, Physica D, 428 (2021), 133025
Dubrovsky V.G., Topovsky V A., “Multi-Lump Solutions of Kp Equation With Integrable Boundary Via Partial Derivative-Dressing Method”, Physica D, 414 (2020), 132740
Habibullin I.T., Khakimova A.R., “On a Method For Constructing the Lax pairs For Integrable Models Via a Quadratic Ansatz”, J. Phys. A-Math. Theor., 50:30 (2017), 305206
Ignatyev M.Yu., “On the Solutions of Some Boundary Value Problems For the General KdV Equation”, Math. Phys. Anal. Geom., 17:3-4 (2014), 493–509
Ignatyev M.Yu., “On Solutions of the Integrable Boundary Value Problem for KdV Equation on the Semi-Axis”, Math. Phys. Anal. Geom., 16:1 (2013), 19–47
Ignatyev M.Yu., “On Solution of the Integrable Initial Boundary Value Problem for KdV Equation on the Semi-Axis”, Math. Phys. Anal. Geom., 16:4 (2013), 381–392
V. L. Vereshchagin, “Explicit solutions of an integrable boundary value problem for the two-dimensional Toda lattice”, Theoret. and Math. Phys., 165:1 (2010), 1256–1261
Vereschagin V.L., “Integrable boundary problems for 2D Toda lattice”, Phys Lett A, 374:46 (2010), 4653–4657
Fokas A.S., “Lax pairs: a novel type of separability”, Inverse Problems, 25:12 (2009), 123007
Gurses, M, “Integrable boundary value problems for elliptic type Toda lattice in a disk”, Journal of Mathematical Physics, 48:10 (2007), 102702
V. L. Vereshchagin, “Integrable boundary-value problem for the Volterra chain on the half-axis”, Math. Notes, 80:5 (2006), 658–662
Fokas, AS, “The nonlinear Schrodinger equation on the half-line”, Nonlinearity, 18:4 (2005), 1771
Fokas, AS, “Linearizable initial boundary value problems for the sine-Gordon equation on the half-line”, Nonlinearity, 17:4 (2004), 1521
A. B. Shabat, “Universal Models of Soliton Hierarchies”, Theoret. and Math. Phys., 136:2 (2003), 1066–1076
I. T. Habibullin, “Initial Boundary Value Problem for the KdV Equation on a Semiaxis with Homogeneous Boundary Conditions”, Theoret. and Math. Phys., 130:1 (2002), 25–44
Fokas, AS, “Integrable Nonlinear evolution equations on the half-line”, Communications in Mathematical Physics, 230:1 (2002), 1
I. T. Habibullin, “An Initial-Boundary Value Problem on the Half-Line for the MKdV Equation”, Funct. Anal. Appl., 34:1 (2000), 52–59
I. T. Habibullin, “KdV equation on a half-line with the zero boundary condition”, Theoret. and Math. Phys., 119:3 (1999), 712–718