Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 2019, Volume 198, Number 2, Pages 225–245
DOI: https://doi.org/10.4213/tmf9546
(Mi tmf9546)
 

This article is cited in 5 scientific papers (total in 5 papers)

Strict versions of integrable hierarchies in pseudodifference operators and the related Cauchy problems

G. F. Helmincka, V. A. Poberezhnybc, S. V. Polenkovad

a Korteweg-de Vries Institute for Mathematics, University of Amsterdam, Amsterdam, The Netherlands
b Institute for Theoretical and Experimental Physics, Moscow, Russia
c National Research University "Higher School of Economics", Moscow, Russia
d University of Twente, Enschede, The Netherlands
Full-text PDF (521 kB) Citations (5)
References:
Abstract: In the algebra $Ps\Delta$ of pseudodifference operators, we consider two deformations of the Lie subalgebra spanned by positive powers of an invertible constant first-degree pseudodifference operator $\Lambda_0$. The first deformation is by the group in $Ps\Delta$ corresponding to the Lie subalgebra $Ps\Delta_{<0}$ of elements of negative degree, and the second is by the group corresponding to the Lie subalgebra $Ps\Delta_{\le0}$ of elements of degree zero or lower. We require that the evolution equations of both deformations be certain compatible Lax equations that are determined by choosing a Lie subalgebra depending on $\Lambda_0$ that respectively complements the Lie subalgebra $Ps\Delta_{<0}$ or $Ps\Delta_{\le0}$. This yields two integrable hierarchies associated with $\Lambda_0$, where the hierarchy of the wider deformation is called the strict version of the first because of the form of the Lax equations. For $\Lambda_0$ equal to the matrix of the shift operator, the hierarchy corresponding to the simplest deformation is called the discrete KP hierarchy. We show that the two hierarchies have an equivalent zero-curvature form and conclude by discussing the solvability of the related Cauchy problems.
Keywords: pseudodifference operator, Lax equation, zero-curvature form, Cauchy problem.
Funding agency Grant number
Ministry of Education and Science of the Russian Federation 5-100
Russian Science Foundation 16-11-10160
Russian Foundation for Basic Research 17-01-00585
Simons Foundation
This research was supported in the framework of government support of leading universities of the Russian Federation “5-100”.
The basic results in Sec. 4 were obtained with support from a grant from the Russian Science Foundation (Project No. 16-11-10160).
The research of V. A. Poberezhny was supported in part by the Russian Foundation for Basic Research (Grant No. 17-01-00585) and the Simons Foundation.
Received: 14.02.2018
Revised: 14.02.2018
English version:
Theoretical and Mathematical Physics, 2019, Volume 198, Issue 2, Pages 197–214
DOI: https://doi.org/10.1134/S004057791902003X
Bibliographic databases:
Document Type: Article
Language: Russian
Citation: G. F. Helminck, V. A. Poberezhny, S. V. Polenkova, “Strict versions of integrable hierarchies in pseudodifference operators and the related Cauchy problems”, TMF, 198:2 (2019), 225–245; Theoret. and Math. Phys., 198:2 (2019), 197–214
Citation in format AMSBIB
\Bibitem{HelPobPol19}
\by G.~F.~Helminck, V.~A.~Poberezhny, S.~V.~Polenkova
\paper Strict versions of integrable hierarchies in pseudodifference operators and the~related Cauchy problems
\jour TMF
\yr 2019
\vol 198
\issue 2
\pages 225--245
\mathnet{http://mi.mathnet.ru/tmf9546}
\crossref{https://doi.org/10.4213/tmf9546}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3920452}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2019TMP...198..197H}
\elib{https://elibrary.ru/item.asp?id=37045227}
\transl
\jour Theoret. and Math. Phys.
\yr 2019
\vol 198
\issue 2
\pages 197--214
\crossref{https://doi.org/10.1134/S004057791902003X}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000464906900003}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85065221267}
Linking options:
  • https://www.mathnet.ru/eng/tmf9546
  • https://doi.org/10.4213/tmf9546
  • https://www.mathnet.ru/eng/tmf/v198/i2/p225
  • This publication is cited in the following 5 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:340
    Full-text PDF :58
    References:43
    First page:15
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024