Loading [MathJax]/jax/output/CommonHTML/jax.js
Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 2018, Volume 196, Number 3, Pages 404–418
DOI: https://doi.org/10.4213/tmf9544
(Mi tmf9544)
 

This article is cited in 13 scientific papers (total in 13 papers)

Phase resonances of the NLS rogue wave recurrence in the quasisymmetric case

P. G. Grinevichab, P. M. Santinicd

a Landau Institute for Theoretical Physics, RAS, Chernogolovka, Russia
b Lomonosov Moscow State University, Moscow, Russia
c Dipartimento di Fisica, Università di Roma "La Sapienza", Roma, Italy
d Istituto Nazionale di Fisica Nucleare, Sezione di Roma, Roma, Italy
References:
Abstract: Based on experimental observations of the recurrence of anomalous waves in water and nonlinear optics, we investigate the theory of anomalous waves for initial data almost satisfying the symmetry conditions in the experiment. We also derive useful formulas, in particular, describing the phase resonance in the recurrence, which can be compared with both the currently available experimental data and the experimental data to be obtained in the near future.
Keywords: focusing nonlinear Schrödinger equation, anomalous wave, recurrence, almost symmetric configuration, phase resonance.
Funding agency Grant number
Russian Academy of Sciences - Federal Agency for Scientific Organizations 0033-2018-0009
Instituto Nazionale di Fisica Nucleare
Sapienza Università di Roma Ateneo 2017
The research of P. G. Grinevich was supported by FASO Russia (Project No. 0033-2018-0009) and the INFN Sezione di Roma and a Sapienza Ateneo 2017 Award Project.
Received: 12.02.2018
Revised: 23.02.2018
English version:
Theoretical and Mathematical Physics, 2018, Volume 196, Issue 3, Pages 1294–1306
DOI: https://doi.org/10.1134/S0040577918090040
Bibliographic databases:
Document Type: Article
Language: Russian
Citation: P. G. Grinevich, P. M. Santini, “Phase resonances of the NLS rogue wave recurrence in the quasisymmetric case”, TMF, 196:3 (2018), 404–418; Theoret. and Math. Phys., 196:3 (2018), 1294–1306
Citation in format AMSBIB
\Bibitem{GriSan18}
\by P.~G.~Grinevich, P.~M.~Santini
\paper Phase resonances of the~NLS rogue wave recurrence in the~quasisymmetric case
\jour TMF
\yr 2018
\vol 196
\issue 3
\pages 404--418
\mathnet{http://mi.mathnet.ru/tmf9544}
\crossref{https://doi.org/10.4213/tmf9544}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3849106}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2018TMP...196.1294G}
\elib{https://elibrary.ru/item.asp?id=35410239}
\transl
\jour Theoret. and Math. Phys.
\yr 2018
\vol 196
\issue 3
\pages 1294--1306
\crossref{https://doi.org/10.1134/S0040577918090040}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000447277900004}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85054696270}
Linking options:
  • https://www.mathnet.ru/eng/tmf9544
  • https://doi.org/10.4213/tmf9544
  • https://www.mathnet.ru/eng/tmf/v196/i3/p404
  • This publication is cited in the following 13 articles:
    1. Yindi Liu, Zhonglong Zhao, “Rogue waves of the (2+1)-dimensional integrable reverse space–time nonlocal Schrödinger equation”, Theoret. and Math. Phys., 222:1 (2025), 34–52  mathnet  crossref  crossref
    2. F Coppini, P M Santini, “Modulation instability, periodic anomalous wave recurrence, and blow up in the Ablowitz–Ladik lattices”, J. Phys. A: Math. Theor., 57:1 (2024), 015202  crossref  mathscinet
    3. F Coppini, P M Santini, “The effect of loss/gain and Hamiltonian perturbations of the Ablowitz—Ladik lattice on the recurrence of periodic anomalous waves”, J. Phys. A: Math. Theor., 57:7 (2024), 075701  crossref  mathscinet
    4. Liming Ling, Xuan Sun, “Elliptic-rogue waves and modulational instability in nonlinear soliton equations”, Phys. Rev. E, 109:6 (2024)  crossref
    5. P. G. Grinevich, “Riemann Surfaces Close to Degenerate Ones in the Theory of Rogue Waves”, Proc. Steklov Inst. Math., 325 (2024), 86–110  mathnet  crossref  crossref  zmath  isi
    6. F. Coppini, G. Grinevich, M. Santini, “Periodic Rogue waves and perturbation theory”, Encyclopedia of Complexity and Systems Science, 2022, 1–22  crossref
    7. F. Coppini, G. Grinevich, M. Santini, “Periodic Rogue waves and perturbation theory”, Perturbation Theory, Encyclopedia of Complexity and Systems Science Series, 2022, 565  crossref  mathscinet
    8. P. G. Grinevich, P. M. Santini, “The linear and nonlinear instability of the akhmediev breather”, Nonlinearity, 34:12 (2021), 8331–8358  crossref  mathscinet  isi
    9. F. Coppini, P. G. Grinevich, P. M. Santini, Encyclopedia of Complexity and Systems Science, 2021, 1  crossref
    10. F. Coppini, P. G. Grinevich, P. M. Santini, “Effect of a small loss or gain in the periodic nonlinear Schrodinger anomalous wave dynamics”, Phys. Rev. E, 101:3 (2020), 032204  crossref  mathscinet  isi
    11. F. Coppini, P. M. Santini, “Fermi-Pasta-Ulam-Tsingou recurrence of periodic anomalous waves in the complex Ginzburg-Landau and in the Lugiato-Lefever equations”, Phys. Rev. E, 102:6 (2020), 062207  crossref  mathscinet  isi
    12. P. G. Grinevich, P. M. Santini, “The finite-gap method and the periodic NLS Cauchy problem of anomalous waves for a finite number of unstable modes”, Russian Math. Surveys, 74:2 (2019), 211–263  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib
    13. Santini P.M., “The Periodic Cauchy Problem For Pt-Symmetric Nls, i: the First Appearance of Rogue Waves, Regular Behavior Or Blow Up At Finite Times”, J. Phys. A-Math. Theor., 51:49 (2018), 495207  crossref  mathscinet  isi
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:500
    Full-text PDF :97
    References:51
    First page:17
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025