Abstract:
We obtain a solution for the Potts model on the Bethe lattice in an external magnetic field with movable nonmagnetic impurities. Using the method of “pseudochaotic” impurity distribution (correlations in the positions of the impurity atoms for the neighboring sides vanish), we obtain a system of equations defining the first-order phase transition curve on the "temperature–external field" plane. We find the dependence of the endpoint of the phase transition line on the concentration of magnetic atoms.
This work was supported by the Ministry of Education
and Science of the Russia Federation (basic part of State Mission
No. 2014/292 for State Projects in science).
Citation:
S. V. Sjomkin, V. P. Smagin, E. G. Gusev, “Potts model on the Bethe lattice with nonmagnetic impurities in an external magnetic field”, TMF, 197:2 (2018), 290–295; Theoret. and Math. Phys., 197:2 (2018), 1645–1649
\Bibitem{SemSmaGus18}
\by S.~V.~Sjomkin, V.~P.~Smagin, E.~G.~Gusev
\paper Potts model on the~Bethe lattice with nonmagnetic impurities in an~external magnetic field
\jour TMF
\yr 2018
\vol 197
\issue 2
\pages 290--295
\mathnet{http://mi.mathnet.ru/tmf9527}
\crossref{https://doi.org/10.4213/tmf9527}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3871562}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2018TMP...197.1645S}
\elib{https://elibrary.ru/item.asp?id=36361394}
\transl
\jour Theoret. and Math. Phys.
\yr 2018
\vol 197
\issue 2
\pages 1645--1649
\crossref{https://doi.org/10.1134/S0040577918110089}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000453068400008}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85058282930}
Linking options:
https://www.mathnet.ru/eng/tmf9527
https://doi.org/10.4213/tmf9527
https://www.mathnet.ru/eng/tmf/v197/i2/p290
This publication is cited in the following 2 articles:
S. V. Semkin, V. P. Smagin, E. G. Gusev, “Ising model with nonmagnetic dilution on recursive lattices”, Theoret. and Math. Phys., 202:2 (2020), 265–271
S. V. Semkin, V. P. Smagin, P. V. Yudin, “Self-consistent approximation in the Ising model of pure and dilute magnets using a pair correlation”, Theoret. and Math. Phys., 205:1 (2020), 1364–1371