Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 2019, Volume 198, Number 3, Pages 451–472
DOI: https://doi.org/10.4213/tmf9524
(Mi tmf9524)
 

This article is cited in 7 scientific papers (total in 7 papers)

Time evolution of quadratic quantum systems: Evolution operators, propagators, and invariants

Sh. M. Nagiyeva, A. I. Akhmedovb

a Institute of Physics, Azerbaijan National Academy of Sciences, Baku, Azerbaijan
b Baku State University, Institute of Physical Problems, Baku, Azerbaijan
Full-text PDF (511 kB) Citations (7)
References:
Abstract: We use the evolution operator method to describe time-dependent quadratic quantum systems in the framework of nonrelativistic quantum mechanics. For simplicity, we consider a free particle with a variable mass $M(t)$, a particle with a variable mass $M(t)$ in an alternating homogeneous field, and a harmonic oscillator with a variable mass $M(t)$ and frequency $\omega(t)$ subject to a variable force $F(t)$. To construct the evolution operators for these systems in an explicit disentangled form, we use a simple technique to find the general solution of a certain class of differential and finite-difference nonstationary Schrödinger-type equations of motion and also the operator identities of the Baker–Campbell–Hausdorff type. With known evolution operators, we can easily find the most general form of the propagators, invariants of any order, and wave functions and establish a unitary relation between systems. Results known in the literature follow from the obtained general results as particular cases.
Keywords: nonstationary quadratic system, evolution operator, propagator, invariant, unitary relation.
Funding agency Grant number
Science Development Foundation under the President of the Republic of Azerbaijan EIF-KETPL-2-2015-1(2015)-1(25)-56/02/1
EIF/MQM/Elm-Tehsil-1-2016-1(26)-71/11/1
Бакинский государственный университет 50 + 50 (2018--2019)
This research is supported by the Science Development Foundation under the President of the Republic of Azerbaijan (Research Grants Nos. EIF-KETPL-2-2015-1(2015)-1(25)-56/02/1 and EIF/MQM/Elm-Tehsil-1-2016-1(26)-71/11/1).
The research of A. I. Ahmadov is supported by Baku State University (Research Grants “50 + 50”, 2018–2019).
Received: 26.12.2017
Revised: 08.06.2018
English version:
Theoretical and Mathematical Physics, 2019, Volume 198, Issue 3, Pages 392–411
DOI: https://doi.org/10.1134/S004057791903005X
Bibliographic databases:
Document Type: Article
Language: Russian
Citation: Sh. M. Nagiyev, A. I. Akhmedov, “Time evolution of quadratic quantum systems: Evolution operators, propagators, and invariants”, TMF, 198:3 (2019), 451–472; Theoret. and Math. Phys., 198:3 (2019), 392–411
Citation in format AMSBIB
\Bibitem{NagAhm19}
\by Sh.~M.~Nagiyev, A.~I.~Akhmedov
\paper Time evolution of quadratic quantum systems: Evolution operators, propagators, and invariants
\jour TMF
\yr 2019
\vol 198
\issue 3
\pages 451--472
\mathnet{http://mi.mathnet.ru/tmf9524}
\crossref{https://doi.org/10.4213/tmf9524}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3920464}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2019TMP...198..392N}
\elib{https://elibrary.ru/item.asp?id=37045240}
\transl
\jour Theoret. and Math. Phys.
\yr 2019
\vol 198
\issue 3
\pages 392--411
\crossref{https://doi.org/10.1134/S004057791903005X}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000464907100005}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85065240846}
Linking options:
  • https://www.mathnet.ru/eng/tmf9524
  • https://doi.org/10.4213/tmf9524
  • https://www.mathnet.ru/eng/tmf/v198/i3/p451
  • This publication is cited in the following 7 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:410
    Full-text PDF :119
    References:60
    First page:11
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024