Loading [MathJax]/jax/output/CommonHTML/jax.js
Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 2019, Volume 198, Number 2, Pages 273–283
DOI: https://doi.org/10.4213/tmf9522
(Mi tmf9522)
 

This article is cited in 2 scientific papers (total in 2 papers)

Orthogonal and symplectic Yangians and Lie algebra representations

D. R. Karakhanyana, R. Kirshnerb

a Yerevan Physics Institute, Yerevan, Armenia
b LInstitut für Theoretischel Physik, Universität Leipzig, Leipzig, Germany
Full-text PDF (440 kB) Citations (2)
References:
Abstract: Orthogonal or symplectic Yangians are defined by the Yang–Baxter RLL relation involving the fundamental R-matrix with so(n) or sp(2m) symmetry. We investigate the conditions on the first- and second-order evaluations as restrictions imposed on the representation weights.
Keywords: orthogonal and symplectic Yangian, first-order evaluation, second-order evaluation, Lie algebra representation.
Funding agency Grant number
State Committee on Science of the Ministry of Education and Science of the Republic of Armenia 18RF-002
Volkswagen Foundation 86 260
Joint Institute for Nuclear Research
This collaborative research was supported by the Joint Institute for Nuclear Research, Dubna (a Heisenberg–Landau grant to R. Kirschner and a Smorodinski-Ter-Antonyan grant to D. Karakhanyan).
The research of D. Karakhanyan is supported in part by the Armenian State Committee of Science (Grant No. 18RF-002) and the Regional Training Network on Theoretical Physics (Volkswagenstiftung Contract No. 86 260).
Received: 21.12.2017
Revised: 22.05.2018
English version:
Theoretical and Mathematical Physics, 2019, Volume 198, Issue 2, Pages 239–248
DOI: https://doi.org/10.1134/S0040577919020053
Bibliographic databases:
Document Type: Article
Language: Russian
Citation: D. R. Karakhanyan, R. Kirshner, “Orthogonal and symplectic Yangians and Lie algebra representations”, TMF, 198:2 (2019), 273–283; Theoret. and Math. Phys., 198:2 (2019), 239–248
Citation in format AMSBIB
\Bibitem{KarKir19}
\by D.~R.~Karakhanyan, R.~Kirshner
\paper Orthogonal and symplectic Yangians and Lie algebra representations
\jour TMF
\yr 2019
\vol 198
\issue 2
\pages 273--283
\mathnet{http://mi.mathnet.ru/tmf9522}
\crossref{https://doi.org/10.4213/tmf9522}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3920454}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2019TMP...198..239K}
\elib{https://elibrary.ru/item.asp?id=37045229}
\transl
\jour Theoret. and Math. Phys.
\yr 2019
\vol 198
\issue 2
\pages 239--248
\crossref{https://doi.org/10.1134/S0040577919020053}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000464906900005}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85065233492}
Linking options:
  • https://www.mathnet.ru/eng/tmf9522
  • https://doi.org/10.4213/tmf9522
  • https://www.mathnet.ru/eng/tmf/v198/i2/p273
  • This publication is cited in the following 2 articles:
    1. D. Karakhanyan, R. Kirschner, “Representations of orthogonal and symplectic Yangians”, Nuclear Physics B, 967 (2021), 115402  crossref
    2. Karakhanyan D., Kirschner R., 32Nd International Colloquium on Group Theoretical Methods in Physics (Group32), Journal of Physics Conference Series, 1194, IOP Publishing Ltd, 2019  crossref  mathscinet  isi
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:337
    Full-text PDF :89
    References:48
    First page:6
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025