Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 2018, Volume 197, Number 2, Pages 163–207
DOI: https://doi.org/10.4213/tmf9513
(Mi tmf9513)
 

This article is cited in 1 scientific paper (total in 1 paper)

Discriminant circle bundles over local models of Strebel graphs and Boutroux curves

M. Bertolaab, D. A. Korotkina

a Concordia University, Department of Mathematics and Statistics, Québec, Canada
b International School for Advanced Studies (SISSA), Area of Mathematics, Trieste, Italy
References:
Abstract: We study special "discriminant" circle bundles over two elementary moduli spaces of meromorphic quadratic differentials with real periods denoted by $\mathcal Q_0^{\mathbb{R}}(-7)$ and$\mathcal Q^{\mathbb{R}}_0([-3]^2)$. The space $\mathcal Q_0^{\mathbb{R}}(-7)$ is the moduli space of meromorphic quadratic differentials on the Riemann sphere with one pole of order seven with real periods; it appears naturally in the study of a neighborhood of the Witten cycle $W_5$ in the combinatorial model based on Jenkins–Strebel quadratic differentials of $\mathcal M_{g,n}$. The space $\mathcal Q^{\mathbb{R}}_0([-3]^2)$ is the moduli space of meromorphic quadratic differentials on the Riemann sphere with two poles of order at most three with real periods; it appears in the description of a neighborhood of Kontsevich's boundary $W_{1,1}$ of the combinatorial model. Applying the formalism of the Bergman tau function to the combinatorial model (with the goal of analytically computing cycles Poincaré dual to certain combinations of tautological classes) requires studying special sections of circle bundles over $\mathcal Q_0^{\mathbb{R}}(-7)$ and $\mathcal Q^{\mathbb{R}}_0([-3]^2)$. In the $\mathcal Q_0^{\mathbb{R}}(-7)$ case, a section of this circle bundle is given by the argument of the modular discriminant. We study the spaces $\mathcal Q_0^{\mathbb{R}}(-7)$ and $\mathcal Q^{\mathbb{R}}_0([-3]^2)$, also called the spaces of Boutroux curves, in detail together with the corresponding circle bundles.
Keywords: moduli space, quadratic differential, Boutroux curve, tau function, Jenkins–Strebel differential, ribbon graph.
Funding agency Grant number
Natural Sciences and Engineering Research Council of Canada (NSERC) RGPIN-2016-06660
RGPIN/3827-2015
Alexander von Humboldt-Stiftung
GNFM Gruppo Nazionale di Fisica Matematica
Fonds de recherche du Québec - Nature et technologies (FRQNT) 2013-PR-166790
The research of M. Bertola was supported in part by the Natural Sciences and Engineering Research Council of Canada (Grant No. RGPIN-2016-06660) and the FQRNT grant “Matrices Aléatoires, Processus Stochastiques et Systèmes Intégrables” (2013–PR–166790).
The research of D. A. Korotkin was supported in part by the Natural Sciences and Engineering Research Council of Canada (Grant No. RGPIN/3827-2015), the Alexander von Humboldt Stiftung, the GNFM Gruppo Nazionale di Fisica Matematica, and the FQRNT grant "Matrices Aléatoires, Processus Stochastiques et Systèmes Intégrables" (2013–PR–166790). He thanks the International School of Advanced Studies (SISSA) in Trieste and the Max-Planck Institute for Gravitational Physics in Golm (Albert Einstein Institute) for their hospitality and support during the preparation of this paper.
Received: 24.11.2017
Revised: 09.02.2018
English version:
Theoretical and Mathematical Physics, 2018, Volume 197, Issue 2, Pages 1535–1571
DOI: https://doi.org/10.1134/S0040577918110016
Bibliographic databases:
Document Type: Article
Language: Russian
Citation: M. Bertola, D. A. Korotkin, “Discriminant circle bundles over local models of Strebel graphs and Boutroux curves”, TMF, 197:2 (2018), 163–207; Theoret. and Math. Phys., 197:2 (2018), 1535–1571
Citation in format AMSBIB
\Bibitem{BerKor18}
\by M.~Bertola, D.~A.~Korotkin
\paper Discriminant circle bundles over local models of Strebel graphs and
Boutroux curves
\jour TMF
\yr 2018
\vol 197
\issue 2
\pages 163--207
\mathnet{http://mi.mathnet.ru/tmf9513}
\crossref{https://doi.org/10.4213/tmf9513}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3871555}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2018TMP...197.1535B}
\elib{https://elibrary.ru/item.asp?id=36361387}
\transl
\jour Theoret. and Math. Phys.
\yr 2018
\vol 197
\issue 2
\pages 1535--1571
\crossref{https://doi.org/10.1134/S0040577918110016}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000453068400001}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85058300993}
Linking options:
  • https://www.mathnet.ru/eng/tmf9513
  • https://doi.org/10.4213/tmf9513
  • https://www.mathnet.ru/eng/tmf/v197/i2/p163
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:315
    Full-text PDF :69
    References:34
    First page:10
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024