Abstract:
We study special "discriminant" circle bundles over two elementary moduli spaces of meromorphic quadratic differentials with real periods denoted by QR0(−7) andQR0([−3]2). The space QR0(−7) is the moduli space of meromorphic quadratic differentials on the Riemann sphere with one pole of order seven with real periods; it appears naturally in the study of a neighborhood of the Witten cycle W5 in the combinatorial model based on Jenkins–Strebel quadratic differentials of Mg,n. The space QR0([−3]2) is the moduli space of meromorphic quadratic differentials on the Riemann sphere with two poles of order at most three with real periods; it appears in the description of a neighborhood of Kontsevich's boundary W1,1 of the combinatorial model. Applying the formalism of the Bergman tau function to the combinatorial model (with the goal of analytically computing cycles Poincaré dual to certain combinations of tautological classes) requires studying special sections of circle bundles over QR0(−7) and QR0([−3]2). In the QR0(−7) case, a section of this circle bundle is given by the argument of the modular discriminant. We study the spaces QR0(−7) and QR0([−3]2), also called the spaces of Boutroux curves, in detail together with the corresponding circle bundles.
The research of M. Bertola was supported in part by
the Natural Sciences and Engineering Research Council of Canada (Grant
No. RGPIN-2016-06660) and the FQRNT grant “Matrices Aléatoires, Processus
Stochastiques et Systèmes Intégrables” (2013–PR–166790).
The research of D. A. Korotkin was supported in part
by the Natural Sciences and Engineering Research Council of Canada (Grant
No. RGPIN/3827-2015), the Alexander von Humboldt Stiftung, the GNFM Gruppo
Nazionale di Fisica Matematica, and the FQRNT grant "Matrices Aléatoires,
Processus Stochastiques et Systèmes Intégrables" (2013–PR–166790). He
thanks the International School of Advanced Studies (SISSA) in Trieste and
the Max-Planck Institute for Gravitational Physics in Golm (Albert Einstein
Institute) for their hospitality and support during the preparation of this
paper.
Citation:
M. Bertola, D. A. Korotkin, “Discriminant circle bundles over local models of Strebel graphs and
Boutroux curves”, TMF, 197:2 (2018), 163–207; Theoret. and Math. Phys., 197:2 (2018), 1535–1571
\Bibitem{BerKor18}
\by M.~Bertola, D.~A.~Korotkin
\paper Discriminant circle bundles over local models of Strebel graphs and
Boutroux curves
\jour TMF
\yr 2018
\vol 197
\issue 2
\pages 163--207
\mathnet{http://mi.mathnet.ru/tmf9513}
\crossref{https://doi.org/10.4213/tmf9513}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3871555}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2018TMP...197.1535B}
\elib{https://elibrary.ru/item.asp?id=36361387}
\transl
\jour Theoret. and Math. Phys.
\yr 2018
\vol 197
\issue 2
\pages 1535--1571
\crossref{https://doi.org/10.1134/S0040577918110016}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000453068400001}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85058300993}
Linking options:
https://www.mathnet.ru/eng/tmf9513
https://doi.org/10.4213/tmf9513
https://www.mathnet.ru/eng/tmf/v197/i2/p163
This publication is cited in the following 1 articles:
Bertola M., Korotkin D., “Hodge and Prym Tau Functions, Strebel Differentials and Combinatorial Model of Mg, N”, Commun. Math. Phys., 378:2 (2020), 1279–1341