Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 2018, Volume 195, Number 3, Pages 331–361
DOI: https://doi.org/10.4213/tmf9503
(Mi tmf9503)
 

This article is cited in 1 scientific paper (total in 1 paper)

Unitary representations of the Wigner group $ISL(2,\mathbb C)$ and a two-spinor description of massive particles with an arbitrary spin

A. P. Isaevab, M. A. Podoinicinab

a Bogoliubov Laboratory of Theoretical Physics, Joint Institute for Nuclear Research, Dubna, Moscow Oblast, Russia
b Dubna State University, Dubna, Moscow Oblast, Russia
Full-text PDF (646 kB) Citations (1)
References:
Abstract: Based on Wigner unitary representations for the covering group $ISL(2,\mathbb C)$ of the Poincaré group, we obtain spin-tensor wave functions of free massive particles with an arbitrary spin that satisfy the Dirac–Pauli–Fierz equations. In the framework of a two-spinor formalism, we construct spin-polarization vectors and obtain conditions that fix the corresponding density matrices (the Berends–Fronsdal projection operators) determining the numerators in the propagators of the fields of such particles. Using these conditions, we find explicit expressions for the particle density matrices with integer (Berends–Fronsdal projection operators) and half-integer spin. We obtain a generalization of the Berens–Fronsdal projection operators to the case of an arbitrary number $D$ of space–time dimensions.
Keywords: Wigner unitary representation, Poincaré group, Berends–Fronsdal projection operator, Dirac–Pauli–Fierz equation.
Funding agency Grant number
Russian Science Foundation 14-11-00598
This research was supported by a grant from the Russian Science Foundation (Project No. 14-11-00598).
Received: 28.10.2017
English version:
Theoretical and Mathematical Physics, 2018, Volume 195, Issue 3, Pages 779–806
DOI: https://doi.org/10.1134/S0040577918060016
Bibliographic databases:
Document Type: Article
PACS: 10
MSC: 81Txx
Language: Russian
Citation: A. P. Isaev, M. A. Podoinicin, “Unitary representations of the Wigner group $ISL(2,\mathbb C)$ and a two-spinor description of massive particles with an arbitrary spin”, TMF, 195:3 (2018), 331–361; Theoret. and Math. Phys., 195:3 (2018), 779–806
Citation in format AMSBIB
\Bibitem{IsaPod18}
\by A.~P.~Isaev, M.~A.~Podoinicin
\paper Unitary representations of the~Wigner group $ISL(2,\mathbb C)$ and a~two-spinor description of~massive particles with an~arbitrary spin
\jour TMF
\yr 2018
\vol 195
\issue 3
\pages 331--361
\mathnet{http://mi.mathnet.ru/tmf9503}
\crossref{https://doi.org/10.4213/tmf9503}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3808540}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2018TMP...195..779I}
\elib{https://elibrary.ru/item.asp?id=34940703}
\transl
\jour Theoret. and Math. Phys.
\yr 2018
\vol 195
\issue 3
\pages 779--806
\crossref{https://doi.org/10.1134/S0040577918060016}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000437754600001}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85049559023}
Linking options:
  • https://www.mathnet.ru/eng/tmf9503
  • https://doi.org/10.4213/tmf9503
  • https://www.mathnet.ru/eng/tmf/v195/i3/p331
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:391
    Full-text PDF :99
    References:55
    First page:16
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024