Loading [MathJax]/jax/output/SVG/config.js
Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 2019, Volume 198, Number 3, Pages 381–417
DOI: https://doi.org/10.4213/tmf9500
(Mi tmf9500)
 

This article is cited in 10 scientific papers (total in 10 papers)

Essentially nonperturbative vacuum polarization effects in a two-dimensional Dirac–Coulomb system with $Z>Z_\mathrm{cr}$: Vacuum charge density

K. A. Sveshnikovab, Yu. S. Voroninaab, A. S. Davydovab, P. A. Grashinab

a Faculty of Physics, Lomonosov Moscow State University, Moscow, Russia
b Bogolyubov Institute of Theoretical Problems of the Microworld, Lomonosov Moscow State University, Moscow, Russia
References:
Abstract: For a planar Dirac–Coulomb system with a supercritical axially symmetric Coulomb source with the charge $Z>Z_\mathrm{cr,1}$ and radius $R_0$, we consider essentially nonperturbative vacuum-polarization effects. Based on a special combination of analytic methods, computer algebra, and numerical calculations used in our previous papers to study analogous effects in the one-dimensional “hydrogen atom”; we study the behavior of both the vacuum density $\rho_{{\textrm{VP}}}(\vec r\,)$ and the total induced charge and also the vacuum-polarization energy $\mathcal{E}_{_\textrm{VP}}$. We mainly focus on divergences of the theory and the corresponding renormalization, on the convergence of partial series for $\rho_{\textrm{VP}}(\vec r\,)$ and $\mathcal{E}_{\textrm{VP}}$, on the integer-valuedness of the total induced charge, and on the behavior of the vacuum energy in the overcritical region. In particular, we show that the renormalization via the fermion loop with two external legs turns out to be a universal method, which removes the divergence of the theory in the purely perturbative and essentially nonperturbative modes for $\rho_{\textrm{VP}}$ and $\mathcal{E}_{\textrm{VP}}$. The most important result is that for $Z \gg Z_\mathrm{cr,1}$ in such a system, the vacuum energy becomes a rapidly decreasing function of the source charge $Z$, which reaches large negative values and whose behavior is estimated from below (in absolute value) as $\sim-|\eta_\mathrm{eff}Z^3| /R_0$. We also study the dependence of polarization effects on the cutoff of the Coulomb asymptotic form of the external field. We show that screening the asymptotic value significantly changes the structure and properties of the first partial channels with $m_j=\pm 1/2,\pm 3/2$. We consider the nonperturbative calculation technique and the behavior of the induced density and the integral induced charge $Q_{\textrm{VP}}$ in the overcritical region in detail.
Keywords: planar Dirac–Coulomb system, vacuum polarization, essentially nonperturbative effects for ${Z>Z_\mathrm{cr}}$, effects of Coulomb asymptotic screening.
Received: 26.10.2017
Revised: 30.07.2018
English version:
Theoretical and Mathematical Physics, 2019, Volume 198, Issue 3, Pages 331–362
DOI: https://doi.org/10.1134/S0040577919030024
Bibliographic databases:
Document Type: Article
Language: Russian
Citation: K. A. Sveshnikov, Yu. S. Voronina, A. S. Davydov, P. A. Grashin, “Essentially nonperturbative vacuum polarization effects in a two-dimensional Dirac–Coulomb system with $Z>Z_\mathrm{cr}$: Vacuum charge density”, TMF, 198:3 (2019), 381–417; Theoret. and Math. Phys., 198:3 (2019), 331–362
Citation in format AMSBIB
\Bibitem{SveVorDav19}
\by K.~A.~Sveshnikov, Yu.~S.~Voronina, A.~S.~Davydov, P.~A.~Grashin
\paper Essentially nonperturbative vacuum polarization effects in a~two-dimensional Dirac--Coulomb system with $Z>Z_\mathrm{cr}$: Vacuum charge density
\jour TMF
\yr 2019
\vol 198
\issue 3
\pages 381--417
\mathnet{http://mi.mathnet.ru/tmf9500}
\crossref{https://doi.org/10.4213/tmf9500}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3920461}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2019TMP...198..331S}
\elib{https://elibrary.ru/item.asp?id=37045237}
\transl
\jour Theoret. and Math. Phys.
\yr 2019
\vol 198
\issue 3
\pages 331--362
\crossref{https://doi.org/10.1134/S0040577919030024}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000464907100002}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85065232139}
Linking options:
  • https://www.mathnet.ru/eng/tmf9500
  • https://doi.org/10.4213/tmf9500
  • https://www.mathnet.ru/eng/tmf/v198/i3/p381
  • This publication is cited in the following 10 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:465
    Full-text PDF :113
    References:81
    First page:18
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025