Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 2004, Volume 140, Number 2, Pages 179–215
DOI: https://doi.org/10.4213/tmf95
(Mi tmf95)
 

This article is cited in 4 scientific papers (total in 4 papers)

Hitchin System on Singular Curves

D. V. Talalaev, A. V. Chervov

Institute for Theoretical and Experimental Physics (Russian Federation State Scientific Center)
Full-text PDF (447 kB) Citations (4)
References:
Abstract: We study the Hitchin system on singular curves. We consider curves obtainable from the projective line by matching at several points or by inserting cusp singularities. It appears that on such singular curves, all basic ingredients of Hitchin integrable systems (moduli space of vector bundles, dualizing sheaf, Higgs field, etc.) can be explicitly described, which can be interesting in itself. Our main result is explicit formulas for the Hitchin Hamiltonians. We also show how to obtain the Hitchin integrable system on such curves by Hamiltonian reduction from a much simpler system on a finite-dimensional space. We pay special attention to a degenerate curve of genus two for which we find an analogue of the Narasimhan–Ramanan parameterization of the moduli space of $SL(2)$ bundles as well as the explicit expressions for the symplectic structure and Hitchin-system Hamiltonians in these coordinates. We demonstrate the efficiency of our approach by rederiving the rational and trigonometric Calogero–Moser systems, which are obtained from Hitchin systems on curves with a marked point and with the respective cusp and node.
Keywords: integrable systems, Hitchin systems, singular curves, Calogero–Moser system, Narasimhan–Ramanan parameterization.
Received: 02.10.2003
English version:
Theoretical and Mathematical Physics, 2004, Volume 140, Issue 2, Pages 1043–1072
DOI: https://doi.org/10.1023/B:TAMP.0000036537.38312.04
Bibliographic databases:
Language: Russian
Citation: D. V. Talalaev, A. V. Chervov, “Hitchin System on Singular Curves”, TMF, 140:2 (2004), 179–215; Theoret. and Math. Phys., 140:2 (2004), 1043–1072
Citation in format AMSBIB
\Bibitem{TalChe04}
\by D.~V.~Talalaev, A.~V.~Chervov
\paper Hitchin System on Singular Curves
\jour TMF
\yr 2004
\vol 140
\issue 2
\pages 179--215
\mathnet{http://mi.mathnet.ru/tmf95}
\crossref{https://doi.org/10.4213/tmf95}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2101701}
\zmath{https://zbmath.org/?q=an:1178.14035}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2004TMP...140.1043T}
\transl
\jour Theoret. and Math. Phys.
\yr 2004
\vol 140
\issue 2
\pages 1043--1072
\crossref{https://doi.org/10.1023/B:TAMP.0000036537.38312.04}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000223934900001}
Linking options:
  • https://www.mathnet.ru/eng/tmf95
  • https://doi.org/10.4213/tmf95
  • https://www.mathnet.ru/eng/tmf/v140/i2/p179
  • This publication is cited in the following 4 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:591
    Full-text PDF :267
    References:79
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024