Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 2018, Volume 195, Number 3, Pages 491–506
DOI: https://doi.org/10.4213/tmf9480
(Mi tmf9480)
 

This article is cited in 47 scientific papers (total in 47 papers)

Inverse problem for a system of integro-differential equations for SH waves in a visco-elastic porous medium: Global solvability

D. K. Durdiev, A. A. Rakhmonov

Bukhara State University, Bukhara, Uzbekistan
References:
Abstract: We consider a system of hyperbolic integro-differential equations for SH waves in a visco-elastic porous medium. The inverse problem is to recover a kernel (memory) in the integral term of this system. We reduce this problem to solving a system of integral equations for the unknown functions. We apply the principle of contraction mappings to this system in the space of continuous functions with a weight norm. We prove the global unique solvability of the inverse problem and obtain a stability estimate of a solution of the inverse problem.
Keywords: integro-differential equation, inverse problem, Dirac delta function, kernel, hyperbolic equation, Lame coefficient, global solvability, weight function.
Received: 06.10.2017
English version:
Theoretical and Mathematical Physics, 2018, Volume 195, Issue 3, Pages 923–937
DOI: https://doi.org/10.1134/S0040577918060090
Bibliographic databases:
Document Type: Article
Language: Russian
Citation: D. K. Durdiev, A. A. Rakhmonov, “Inverse problem for a system of integro-differential equations for SH waves in a visco-elastic porous medium: Global solvability”, TMF, 195:3 (2018), 491–506; Theoret. and Math. Phys., 195:3 (2018), 923–937
Citation in format AMSBIB
\Bibitem{DurRak18}
\by D.~K.~Durdiev, A.~A.~Rakhmonov
\paper Inverse problem for a~system of integro-differential equations for SH waves in a~visco-elastic porous medium: Global solvability
\jour TMF
\yr 2018
\vol 195
\issue 3
\pages 491--506
\mathnet{http://mi.mathnet.ru/tmf9480}
\crossref{https://doi.org/10.4213/tmf9480}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3808548}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2018TMP...195..923D}
\elib{https://elibrary.ru/item.asp?id=34940711}
\transl
\jour Theoret. and Math. Phys.
\yr 2018
\vol 195
\issue 3
\pages 923--937
\crossref{https://doi.org/10.1134/S0040577918060090}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000437754600009}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85049558104}
Linking options:
  • https://www.mathnet.ru/eng/tmf9480
  • https://doi.org/10.4213/tmf9480
  • https://www.mathnet.ru/eng/tmf/v195/i3/p491
  • This publication is cited in the following 47 articles:
    1. Haniye Dehestani, Yadollah Ordokhani, Mohsen Razzaghi, “Ritz-least squares support vector regression technique for the system of fractional Fredholm-Volterra integro-differential equations”, J. Appl. Math. Comput., 2025  crossref
    2. Jurabek Safarov, Askar Rakhmonov, Maftunakhon Safarova, PROBLEMS IN THE TEXTILE AND LIGHT INDUSTRY IN THE CONTEXT OF INTEGRATION OF SCIENCE AND INDUSTRY AND WAYS TO SOLVE THEM: PTLICISIWS-2, 3045, PROBLEMS IN THE TEXTILE AND LIGHT INDUSTRY IN THE CONTEXT OF INTEGRATION OF SCIENCE AND INDUSTRY AND WAYS TO SOLVE THEM: PTLICISIWS-2, 2024, 040006  crossref
    3. Durdimurod Durdiev, Halim Turdiev, Asliddin Boltaev, PROBLEMS IN THE TEXTILE AND LIGHT INDUSTRY IN THE CONTEXT OF INTEGRATION OF SCIENCE AND INDUSTRY AND WAYS TO SOLVE THEM: PTLICISIWS-2, 3045, PROBLEMS IN THE TEXTILE AND LIGHT INDUSTRY IN THE CONTEXT OF INTEGRATION OF SCIENCE AND INDUSTRY AND WAYS TO SOLVE THEM: PTLICISIWS-2, 2024, 040015  crossref
    4. Zavqiddin Bozorov, Halim Turdiev, PROBLEMS IN THE TEXTILE AND LIGHT INDUSTRY IN THE CONTEXT OF INTEGRATION OF SCIENCE AND INDUSTRY AND WAYS TO SOLVE THEM: PTLICISIWS-2, 3045, PROBLEMS IN THE TEXTILE AND LIGHT INDUSTRY IN THE CONTEXT OF INTEGRATION OF SCIENCE AND INDUSTRY AND WAYS TO SOLVE THEM: PTLICISIWS-2, 2024, 040010  crossref
    5. Durdimurod Durdiev, Javlon Nuriddinov, PROBLEMS IN THE TEXTILE AND LIGHT INDUSTRY IN THE CONTEXT OF INTEGRATION OF SCIENCE AND INDUSTRY AND WAYS TO SOLVE THEM: PTLICISIWS-2, 3045, PROBLEMS IN THE TEXTILE AND LIGHT INDUSTRY IN THE CONTEXT OF INTEGRATION OF SCIENCE AND INDUSTRY AND WAYS TO SOLVE THEM: PTLICISIWS-2, 2024, 040013  crossref
    6. Durdimurod Durdiev, Javlon Nuriddinov, PROBLEMS IN THE TEXTILE AND LIGHT INDUSTRY IN THE CONTEXT OF INTEGRATION OF SCIENCE AND INDUSTRY AND WAYS TO SOLVE THEM: PTLICISIWS-2, 3045, PROBLEMS IN THE TEXTILE AND LIGHT INDUSTRY IN THE CONTEXT OF INTEGRATION OF SCIENCE AND INDUSTRY AND WAYS TO SOLVE THEM: PTLICISIWS-2, 2024, 040014  crossref
    7. Jonibek Jumaev, Zavqiddin Bozorov, Istam Shadmanov, Dilshod Atoev, PROBLEMS IN THE TEXTILE AND LIGHT INDUSTRY IN THE CONTEXT OF INTEGRATION OF SCIENCE AND INDUSTRY AND WAYS TO SOLVE THEM: PTLICISIWS-2, 3045, PROBLEMS IN THE TEXTILE AND LIGHT INDUSTRY IN THE CONTEXT OF INTEGRATION OF SCIENCE AND INDUSTRY AND WAYS TO SOLVE THEM: PTLICISIWS-2, 2024, 040004  crossref
    8. Jonibek Jumaev, Durdimurod Durdiev, Shakhnoza Ibragimova, Bekhzod Zaripov, PROBLEMS IN THE TEXTILE AND LIGHT INDUSTRY IN THE CONTEXT OF INTEGRATION OF SCIENCE AND INDUSTRY AND WAYS TO SOLVE THEM: PTLICISIWS-2, 3045, PROBLEMS IN THE TEXTILE AND LIGHT INDUSTRY IN THE CONTEXT OF INTEGRATION OF SCIENCE AND INDUSTRY AND WAYS TO SOLVE THEM: PTLICISIWS-2, 2024, 040011  crossref
    9. M. R. Tomaev, Zh. D. Totieva, “An inverse two-dimensional problem for determining two unknowns in equation of memory type for a weakly horizontally inhomogeneous medium”, Vladikavk. matem. zhurn., 26:3 (2024), 112–134  mathnet  crossref
    10. A. A. Boltayev, D. K. Durdiev, A. A. Rahmonov, “Kernel determination problem in the third order 1D Moore–Gibson–Thompson equation with memory”, Vladikavk. matem. zhurn., 26:4 (2024), 55–65  mathnet  crossref
    11. D. K. Durdiev, A. A. Boltaev, “Zadacha opredeleniya yader v dvumernoi sisteme uravnenii vyazkouprugosti”, Izvestiya Irkutskogo gosudarstvennogo universiteta. Seriya Matematika, 43 (2023), 31–47  mathnet  crossref  mathscinet
    12. D. K. Durdiev, Kh. Kh. Turdiev, “Zadacha opredeleniya yader v sisteme integro-differentsialnykh uravnenii akustiki”, Dalnevost. matem. zhurn., 23:2 (2023), 190–210  mathnet  crossref
    13. D. I. Akramova, “Obratnaya koeffitsientnaya zadacha dlya drobno-diffuzionnogo uravneniya s operatorom Besselya”, Izv. vuzov. Matem., 2023, no. 9, 45–57  mathnet  crossref
    14. D. K. Durdiev, A. A. Boltaev, A. A. Rakhmonov, “Zadacha opredeleniya yadra tipa svertki v uravnenii Mura–Gibsona–Tomsona tretego poryadka”, Izv. vuzov. Matem., 2023, no. 12, 3–16  mathnet  crossref
    15. Ufa Math. J., 15:2 (2023), 119–134  mathnet  crossref
    16. M. Tomaev, Zh. Totieva, “Numerical solution of a two-dimensional problem of determining the propagation velocity of seismic waves in inhomogeneous medium of memory type”, Russian Journal of Earth Sciences, 23:4 (2023), 1–16  crossref
    17. M. A. Sultanov, D. Durdiev, A. Rahmonov, R. Turebekov, Y. Nurlanuly, “Source identification problems for time-fractional diffusion equation”, Sixth international conference of mathematical sciences (ICMS 2022), AIP Conf. Proc., 2879, no. 1, 2023, 040002  crossref
    18. D. K. Durdiev, J. J. Jumaev, “One-dimensional inverse problems of determining the kernel of the integro-differential heat equation in a bounded domain”, Nonautonomous Dynamical Systems, 10:1 (2023), 20220163  crossref  mathscinet
    19. D. K. Durdiev, A. A. Boltaev, A. A. Rahmonov, “Convolution Kernel Determination Problem in the Third Order Moore–Gibson–Thompson Equation”, Russ Math., 67:12 (2023), 1  crossref
    20. D. I. Akramova, “Inverse Coefficient Problem for a Fractional-Diffusion Equation with a Bessel Operator”, Russ Math., 67:9 (2023), 39  crossref
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:614
    Full-text PDF :147
    References:72
    First page:24
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025