Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 2018, Volume 196, Number 2, Pages 294–312
DOI: https://doi.org/10.4213/tmf9471
(Mi tmf9471)
 

This article is cited in 9 scientific papers (total in 9 papers)

A direct algorithm for constructing recursion operators and Lax pairs for integrable models

I. T. Habibullinab, A. R. Khakimovaab

a Institution of Russian Academy of Sciences Institute of Mathematics with Computer Center, Ufa, Russia
b Bashkir State University, Ufa, Russia
Full-text PDF (507 kB) Citations (9)
References:
Abstract: We suggest an algorithm for seeking recursion operators for nonlinear integrable equations. We find that the recursion operator $R$ can be represented as a ratio of the form $R=L_1^{-1}L_2$, where the linear differential operators $L_1$ and $L_2$ are chosen such that the ordinary differential equation $(L_2-\lambda~L_1)U=0$ is consistent with the linearization of the given nonlinear integrable equation for any value of the parameter $\lambda\in\mathbb{C}$. To construct the operator $L_1$, we use the concept of an invariant manifold, which is a generalization of a symmetry. To seek $L_2$, we then take an auxiliary linear equation related to the linearized equation by a Darboux transformation. It is remarkable that the equation $L_1\widetilde U=L_2U$ defines a Bäcklund transformation mapping a solution $U$ of the linearized equation to another solution $\widetilde U$ of the same equation. We discuss the connection of the invariant manifold with the Lax pairs and the Dubrovin equations.
Keywords: Lax pair, integrable chain, higher symmetry, invariant manifold, recursion operator.
Received: 29.09.2017
English version:
Theoretical and Mathematical Physics, 2018, Volume 196, Issue 2, Pages 1200–1216
DOI: https://doi.org/10.1134/S004057791808007X
Bibliographic databases:
Document Type: Article
Language: Russian
Citation: I. T. Habibullin, A. R. Khakimova, “A direct algorithm for constructing recursion operators and Lax pairs for integrable models”, TMF, 196:2 (2018), 294–312; Theoret. and Math. Phys., 196:2 (2018), 1200–1216
Citation in format AMSBIB
\Bibitem{HabKha18}
\by I.~T.~Habibullin, A.~R.~Khakimova
\paper A~direct algorithm for constructing recursion operators and Lax pairs for integrable models
\jour TMF
\yr 2018
\vol 196
\issue 2
\pages 294--312
\mathnet{http://mi.mathnet.ru/tmf9471}
\crossref{https://doi.org/10.4213/tmf9471}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3833558}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2018TMP...196.1200H}
\elib{https://elibrary.ru/item.asp?id=35276545}
\transl
\jour Theoret. and Math. Phys.
\yr 2018
\vol 196
\issue 2
\pages 1200--1216
\crossref{https://doi.org/10.1134/S004057791808007X}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000443722200007}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85052687266}
Linking options:
  • https://www.mathnet.ru/eng/tmf9471
  • https://doi.org/10.4213/tmf9471
  • https://www.mathnet.ru/eng/tmf/v196/i2/p294
  • This publication is cited in the following 9 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:401
    Full-text PDF :216
    References:68
    First page:18
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024