Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 2018, Volume 196, Number 2, Pages 254–265
DOI: https://doi.org/10.4213/tmf9468
(Mi tmf9468)
 

This article is cited in 8 scientific papers (total in 8 papers)

Matrix Kadomtsev–Petviashvili equation: Tropical limit, Yang–Baxter and pentagon maps

A. Dimakisa, F. Müller-Hoissenb

a Department of Financial and Management Engineering, University of the Aegean, Chios, Greece
b Max-Planck-Institut für Dynamik und Selbstorganisation, Göttingen, Germany
References:
Abstract: In the tropical limit of matrix KP-II solitons, their support at a fixed time is a planar graph with "polarizations" attached to its linear parts. We explore a subclass of soliton solutions whose tropical limit graph has the form of a rooted and generically binary tree and also solutions whose limit graph comprises two relatively inverted such rooted tree graphs. The distribution of polarizations over the lines constituting the graph is fully determined by a parameter-dependent binary operation and a Yang–Baxter map (generally nonlinear), which becomes linear in the vector KP case and is hence given by an $R$-matrix. The parameter dependence of the binary operation leads to a solution of the pentagon equation, which has a certain relation to the Rogers dilogarithm via a solution of the hexagon equation, the next member in the family of polygon equations. A generalization of the $R$-matrix obtained in the vector KP case also solves a pentagon equation. A corresponding local version of the latter then leads to a new solution of the hexagon equation.
Keywords: soliton, KP equation, Yang–Baxter map, pentagon equation, hexagon equation, tropical limit, binary tree, dilogarithm.
Received: 28.09.2017
English version:
Theoretical and Mathematical Physics, 2018, Volume 196, Issue 2, Pages 1164–1173
DOI: https://doi.org/10.1134/S0040577918080056
Bibliographic databases:
Document Type: Article
Language: Russian
Citation: A. Dimakis, F. Müller-Hoissen, “Matrix Kadomtsev–Petviashvili equation: Tropical limit, Yang–Baxter and pentagon maps”, TMF, 196:2 (2018), 254–265; Theoret. and Math. Phys., 196:2 (2018), 1164–1173
Citation in format AMSBIB
\Bibitem{DimMul18}
\by A.~Dimakis, F.~M\"uller-Hoissen
\paper Matrix Kadomtsev--Petviashvili equation: Tropical limit, Yang--Baxter and pentagon maps
\jour TMF
\yr 2018
\vol 196
\issue 2
\pages 254--265
\mathnet{http://mi.mathnet.ru/tmf9468}
\crossref{https://doi.org/10.4213/tmf9468}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3833556}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2018TMP...196.1164D}
\elib{https://elibrary.ru/item.asp?id=35276543}
\transl
\jour Theoret. and Math. Phys.
\yr 2018
\vol 196
\issue 2
\pages 1164--1173
\crossref{https://doi.org/10.1134/S0040577918080056}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000443722200005}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85052677008}
Linking options:
  • https://www.mathnet.ru/eng/tmf9468
  • https://doi.org/10.4213/tmf9468
  • https://www.mathnet.ru/eng/tmf/v196/i2/p254
  • This publication is cited in the following 8 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024