Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 2018, Volume 195, Number 3, Pages 437–450
DOI: https://doi.org/10.4213/tmf9451
(Mi tmf9451)
 

This article is cited in 2 scientific papers (total in 2 papers)

Asymptotic solution of a multichannel scattering problem with a nonadiabatic coupling

S. L. Yakovleva, E. A. Yarevskya, N. O. Elanderb, A. K. Belyaevc

a St. Petersburg State University, St. Petersburg, Russia
b Stockholm University, Stockholm, Sweden
c Herzen State Pedagogical University of Russia, St. Petersburg,Russia
Full-text PDF (436 kB) Citations (2)
References:
Abstract: We consider a multichannel scattering problem in an adiabatic representation. We assume that the nonadiabatic coupling matrix has a nontrivial value at large internuclear separations, and we construct asymptotic solutions at large internuclear distances. We show that these solutions up to the first order of the perturbation theory are identical to the asymptotic solutions of the reprojection approach, which was previously proposed as a means for solving the electron translation problem in the context of the Born–Oppenheimer method.
Keywords: multichannel scattering, asymptotic solution of a scattering problem, adiabatic approximation.
Funding agency Grant number
Russian Foundation for Basic Research 18-02-00492_а
16-03-00149
Carl Trygger Foundation
The research of S. L. Yakovlev and E. A. Yarevsky is supported by St. Petersburg State University (Project No. 11.38.241.2015).
The research of N. O. Elander is supported by a grant from the Carl Trygger Foundation.
The research of A. K. Belyaev is supported by the Russian Foundation for Basic Research (Grant No. 16-03-00149).
Received: 24.08.2017
Revised: 09.11.2017
English version:
Theoretical and Mathematical Physics, 2018, Volume 195, Issue 3, Pages 874–885
DOI: https://doi.org/10.1134/S0040577918060065
Bibliographic databases:
Document Type: Article
PACS: 03.65.-w, 03.65.Nk, 34.50.-s
MSC: 81U10 81U99
Language: Russian
Citation: S. L. Yakovlev, E. A. Yarevsky, N. O. Elander, A. K. Belyaev, “Asymptotic solution of a multichannel scattering problem with a nonadiabatic coupling”, TMF, 195:3 (2018), 437–450; Theoret. and Math. Phys., 195:3 (2018), 874–885
Citation in format AMSBIB
\Bibitem{YakYarEla18}
\by S.~L.~Yakovlev, E.~A.~Yarevsky, N.~O.~Elander, A.~K.~Belyaev
\paper Asymptotic solution of a~multichannel scattering problem with a~nonadiabatic coupling
\jour TMF
\yr 2018
\vol 195
\issue 3
\pages 437--450
\mathnet{http://mi.mathnet.ru/tmf9451}
\crossref{https://doi.org/10.4213/tmf9451}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3808545}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2018TMP...195..874Y}
\elib{https://elibrary.ru/item.asp?id=34940708}
\transl
\jour Theoret. and Math. Phys.
\yr 2018
\vol 195
\issue 3
\pages 874--885
\crossref{https://doi.org/10.1134/S0040577918060065}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000437754600006}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85049567970}
Linking options:
  • https://www.mathnet.ru/eng/tmf9451
  • https://doi.org/10.4213/tmf9451
  • https://www.mathnet.ru/eng/tmf/v195/i3/p437
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:378
    Full-text PDF :90
    References:67
    First page:17
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024